Blind MRI Brain Lesion Inpainting Using Deep Learning

被引:10
作者
Manjon, Jose V. [1 ]
Romero, Jose E. [1 ]
Vivo-Hernando, Roberto [2 ]
Rubio, Gregorio [3 ]
Aparici, Fernando [4 ]
de la Iglesia-Vaya, Maria [5 ]
Tourdias, Thomas [6 ]
Coupe, Pierrick [7 ]
机构
[1] Univ Politecn Valencia, Inst Aplicaciones las Tecnol Informac & Comunicac, Camino Vera S-N, Valencia 46022, Spain
[2] Univ Politecn Valencia, Inst Automat & Informat Ind, Camino Vera S-N, Valencia 46022, Spain
[3] Univ Politecn Valencia, Dept Matemat Aplicada, Camino Vera S-N, Valencia 46022, Spain
[4] Hosp Univ & Politecn La Fe, Area Imagen Med, Valencia, Spain
[5] Brain Connect Lab, Joint Unit FISABIO & Prince Felipe Res Ctr CIPF, Valencia, Spain
[6] CHU Bordeaux, Serv Neuroimagerie Diagnost & Therapeut, F-33076 Bordeaux, France
[7] CNRS, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France
来源
SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2020 | 2020年 / 12417卷
关键词
Lesion inpainting; MRI; Deep learning; Robust segmentation; IMAGES;
D O I
10.1007/978-3-030-59520-3_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In brain image analysis many of the current pipelines are not robust to the presence of lesions which degrades their accuracy and robustness. For example, performance of classic medical image processing operations such as non-linear registration or segmentation rapidly decreases when dealing with lesions. To minimize their impact, some authors have proposed to inpaint these lesions so classic pipelines can be used. However, this requires to manually delineate the regions of interest which is time consuming. In this paper, we propose a deep network that is able to blindly inpaint lesions in brain images automatically allowing current pipelines to robustly operate under pathological conditions. We demonstrate the improved robustness/accuracy in the brain segmentation problem using the SPM12 pipeline with our automatically inpainted images.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
[41]   Comparison of deep learning models for brain tumor classification using MRI images [J].
Cinar, Necip ;
Kaya, Buket ;
Kaya, Mehmet .
2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, :1382-1385
[42]   Angle Classifier for Registration of MRI and CT Brain Images using Deep Learning [J].
Chandrashekar, Leena ;
Sreedevi, A. ;
Shekar, Chandan M. ;
Raj, Manoj ;
Kumar, Naveen ;
Vinay, R. .
2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (IEEE - ICRAIE-2020), 2020,
[43]   Deep learning for brain metastasis detection and segmentation in longitudinal MRI data [J].
Huang, Yixing ;
Bert, Christoph ;
Sommer, Philipp ;
Frey, Benjamin ;
Gaipl, Udo ;
Distel, Luitpold, V ;
Weissmann, Thomas ;
Uder, Michael ;
Schmidt, Manuel A. ;
Dorfler, Arnd ;
Maier, Andreas ;
Fietkau, Rainer ;
Putz, Florian .
MEDICAL PHYSICS, 2022, 49 (09) :5773-5786
[44]   Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions [J].
Akkus, Zeynettin ;
Galimzianova, Alfiia ;
Hoogi, Assaf ;
Rubin, Daniel L. ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :449-459
[45]   Deep Learning Methods for MRI Brain Tumor Segmentation: a comparative study [J].
Brahim, Ikram ;
Fourer, Dominique ;
Vigneron, Vincent ;
Maaref, Hichem .
2019 NINTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2019,
[46]   DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification [J].
Zhang, Shu ;
He, Ran ;
Sun, Zhenan ;
Tan, Tieniu .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2018, 13 (03) :637-647
[47]   Lesion Border Detection Using Deep Learning [J].
Sabouri, Peyman ;
GholamHosseini, Hamid .
2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, :1416-1421
[48]   Deep learning detection of acute and sub-acute lesion activity from single-timepoint conventional brain MRI in multiple sclerosis [J].
Spinat, Quentin ;
Audelan, Benoit ;
Jiang, Xiaotong ;
Caba, Bastien ;
Benichoux, Alexis ;
Ioannidou, Despoina ;
Teboul, Olivier ;
Komodakis, Nikos ;
Huijbers, Willem ;
Gabr, Refaat ;
Gafson, Arie ;
Elliott, Colm ;
Arnold, Douglas ;
Paragios, Nikos ;
Belachew, Shibeshih .
MEDICAL IMAGE ANALYSIS, 2025, 105
[49]   Deep Learning for Automated Ischemic Stroke Lesion Segmentation from Multi-spectral MRI [J].
Dogru, Dilan ;
Ozdemir, Mehmet Akif ;
Guren, Onan .
32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, :1392-1396
[50]   Deep Learning for Skin Lesion Segmentation [J].
Mishra, Rashika ;
Daescu, Ovidiu .
2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, :1189-1194