Blind MRI Brain Lesion Inpainting Using Deep Learning

被引:9
作者
Manjon, Jose V. [1 ]
Romero, Jose E. [1 ]
Vivo-Hernando, Roberto [2 ]
Rubio, Gregorio [3 ]
Aparici, Fernando [4 ]
de la Iglesia-Vaya, Maria [5 ]
Tourdias, Thomas [6 ]
Coupe, Pierrick [7 ]
机构
[1] Univ Politecn Valencia, Inst Aplicaciones las Tecnol Informac & Comunicac, Camino Vera S-N, Valencia 46022, Spain
[2] Univ Politecn Valencia, Inst Automat & Informat Ind, Camino Vera S-N, Valencia 46022, Spain
[3] Univ Politecn Valencia, Dept Matemat Aplicada, Camino Vera S-N, Valencia 46022, Spain
[4] Hosp Univ & Politecn La Fe, Area Imagen Med, Valencia, Spain
[5] Brain Connect Lab, Joint Unit FISABIO & Prince Felipe Res Ctr CIPF, Valencia, Spain
[6] CHU Bordeaux, Serv Neuroimagerie Diagnost & Therapeut, F-33076 Bordeaux, France
[7] CNRS, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France
来源
SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2020 | 2020年 / 12417卷
关键词
Lesion inpainting; MRI; Deep learning; Robust segmentation; IMAGES;
D O I
10.1007/978-3-030-59520-3_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In brain image analysis many of the current pipelines are not robust to the presence of lesions which degrades their accuracy and robustness. For example, performance of classic medical image processing operations such as non-linear registration or segmentation rapidly decreases when dealing with lesions. To minimize their impact, some authors have proposed to inpaint these lesions so classic pipelines can be used. However, this requires to manually delineate the regions of interest which is time consuming. In this paper, we propose a deep network that is able to blindly inpaint lesions in brain images automatically allowing current pipelines to robustly operate under pathological conditions. We demonstrate the improved robustness/accuracy in the brain segmentation problem using the SPM12 pipeline with our automatically inpainted images.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
[31]   Ultrafast Brain MRI Protocol at 1.5 T Using Deep Learning and Multi-shot EPI [J].
Altmann, Sebastian ;
Mercado, Mario Alberto Abello ;
Brockstedt, Lavinia ;
Kronfeld, Andrea ;
Clifford, Bryan ;
Feiweier, Thorsten ;
Uphaus, Timo ;
Groppa, Sergiu ;
Brockmann, Marc A. ;
Othman, Ahmed E. .
ACADEMIC RADIOLOGY, 2023, 30 (12) :2988-2998
[32]   Advancements in Frank's sign Identification using deep learning on 3D brain MRI [J].
Jo, Sungman ;
Kim, Jun Sung ;
Kwon, Min Jeong ;
Park, Jieun ;
Kim, Jeong Lan ;
Jhoo, Jin Hyeong ;
Kim, Eosu ;
Sunwoo, Leonard ;
Kim, Jae Hyoung ;
Han, Ji Won ;
Kim, Ki Woong .
SCIENTIFIC REPORTS, 2025, 15 (01)
[33]   Deep Learning Based Binary Classification for Alzheimer's Disease Detection using Brain MRI Images [J].
Hussain, Emtiaz ;
Hasan, Mahmudul ;
Hassan, Syed Zafrul ;
Azmi, Tanzina Hassan ;
Rahman, Md Anisur ;
Parvez, Mohammad Zavid .
PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, :1115-1120
[34]   A survey of MRI-based brain tissue segmentation using deep learning [J].
Wu, Liang ;
Wang, Shirui ;
Liu, Jun ;
Hou, Lixia ;
Li, Na ;
Su, Fei ;
Yang, Xi ;
Lu, Weizhao ;
Qiu, Jianfeng ;
Zhang, Ming ;
Song, Li .
COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (01)
[35]   Localized Motion Artifact Reduction on Brain MRI Using Deep Learning with Effective Data Augmentation Techniques [J].
Zhao, Yijun ;
Ossowski, Jacek ;
Wang, Xuming ;
Li, Shangjin ;
Devinsky, Orrin ;
Martin, Samantha P. ;
Pardoe, Heath R. .
2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
[36]   Convolutional Autoencoder based Deep Learning Approach for Alzheimer's Disease Diagnosis using Brain MRI [J].
Yagis, Ekin ;
De Herrera, Alba G. Seco ;
Citi, Luca .
2021 IEEE 34TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2021, :486-491
[37]   MRI Segmentation and Classification of Human Brain Using Deep Learning for Diagnosis of Alzheimer's Disease: A Survey [J].
Yamanakkanavar, Nagaraj ;
Choi, Jae Young ;
Lee, Bumshik .
SENSORS, 2020, 20 (11) :1-31
[38]   Classification of brain tumor isocitrate dehydrogenase status using MRI and deep learning [J].
Nalawade, Sahil ;
Murugesan, Gowtham K. ;
Vejdani-Jahromi, Maryam ;
Fisicaro, Ryan A. ;
Yogananda, Chandan G. Bangalore ;
Wagner, Ben ;
Mickey, Bruce ;
Maher, Elizabeth ;
Pinho, Marco C. ;
Fei, Baowei ;
Madhuranthakam, Ananth J. ;
Maldjian, Joseph A. .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (04)
[39]   Comparison of deep learning models for brain tumor classification using MRI images [J].
Cinar, Necip ;
Kaya, Buket ;
Kaya, Mehmet .
2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, :1382-1385
[40]   Angle Classifier for Registration of MRI and CT Brain Images using Deep Learning [J].
Chandrashekar, Leena ;
Sreedevi, A. ;
Shekar, Chandan M. ;
Raj, Manoj ;
Kumar, Naveen ;
Vinay, R. .
2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (IEEE - ICRAIE-2020), 2020,