Blind MRI Brain Lesion Inpainting Using Deep Learning

被引:10
作者
Manjon, Jose V. [1 ]
Romero, Jose E. [1 ]
Vivo-Hernando, Roberto [2 ]
Rubio, Gregorio [3 ]
Aparici, Fernando [4 ]
de la Iglesia-Vaya, Maria [5 ]
Tourdias, Thomas [6 ]
Coupe, Pierrick [7 ]
机构
[1] Univ Politecn Valencia, Inst Aplicaciones las Tecnol Informac & Comunicac, Camino Vera S-N, Valencia 46022, Spain
[2] Univ Politecn Valencia, Inst Automat & Informat Ind, Camino Vera S-N, Valencia 46022, Spain
[3] Univ Politecn Valencia, Dept Matemat Aplicada, Camino Vera S-N, Valencia 46022, Spain
[4] Hosp Univ & Politecn La Fe, Area Imagen Med, Valencia, Spain
[5] Brain Connect Lab, Joint Unit FISABIO & Prince Felipe Res Ctr CIPF, Valencia, Spain
[6] CHU Bordeaux, Serv Neuroimagerie Diagnost & Therapeut, F-33076 Bordeaux, France
[7] CNRS, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France
来源
SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2020 | 2020年 / 12417卷
关键词
Lesion inpainting; MRI; Deep learning; Robust segmentation; IMAGES;
D O I
10.1007/978-3-030-59520-3_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In brain image analysis many of the current pipelines are not robust to the presence of lesions which degrades their accuracy and robustness. For example, performance of classic medical image processing operations such as non-linear registration or segmentation rapidly decreases when dealing with lesions. To minimize their impact, some authors have proposed to inpaint these lesions so classic pipelines can be used. However, this requires to manually delineate the regions of interest which is time consuming. In this paper, we propose a deep network that is able to blindly inpaint lesions in brain images automatically allowing current pipelines to robustly operate under pathological conditions. We demonstrate the improved robustness/accuracy in the brain segmentation problem using the SPM12 pipeline with our automatically inpainted images.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
[21]   Deep-Learning Detection of Cancer Metastases to the Brain on MRI [J].
Zhang, Min ;
Young, Geoffrey S. ;
Chen, Huai ;
Li, Jing ;
Qin, Lei ;
McFaline-Figueroa, J. Ricardo ;
Reardon, David A. ;
Cao, Xinhua ;
Wu, Xian ;
Xu, Xiaoyin .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (04) :1227-1236
[22]   Automated Brain Tumor Segmentation and Classification in MRI Using YOLO-Based Deep Learning [J].
Almufareh, Maram Fahaad ;
Imran, Muhammad ;
Khan, Abdullah ;
Humayun, Mamoona ;
Asim, Muhammad .
IEEE ACCESS, 2024, 12 :16189-16207
[23]   Fully Automated Brain Tumor Segmentation and Survival Prediction of Gliomas Using Deep Learning and MRI [J].
Yogananda, Chandan Ganesh Bangalore ;
Wagner, Ben ;
Nalawade, Sahil S. ;
Murugesan, Gowtham K. ;
Pinho, Marco C. ;
Fei, Baowei ;
Madhuranthakam, Ananth J. ;
Maldjian, Joseph A. .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 :99-112
[24]   A deep learning approach for the early diagnosis of Parkinson's disease using brain MRI scans [J].
Mishra, Rishik ;
Jalal, Anand Singh ;
Kumar, Manoj ;
Jalal, Sunita .
INTERNATIONAL JOURNAL OF APPLIED PATTERN RECOGNITION, 2022, 7 (01) :64-77
[25]   A diagnosis model for brain atrophy using deep learning and MRI of type 2 diabetes mellitus [J].
Syed, Saba Raoof ;
Durai, M. A. Saleem .
FRONTIERS IN NEUROSCIENCE, 2023, 17
[26]   Review of MRI-based brain tumor image segmentation using deep learning methods [J].
Isin, Ali ;
Direkoglu, Cem ;
Sah, Melike .
12TH INTERNATIONAL CONFERENCE ON APPLICATION OF FUZZY SYSTEMS AND SOFT COMPUTING, ICAFS 2016, 2016, 102 :317-324
[27]   Boosting Deep Learning for Interpretable Brain MRI Lesion Detection through the Integration of Radiology Report Information [J].
Dai, Lisong ;
Lei, Jiayu ;
Ma, Fenglong ;
Sun, Zheng ;
Du, Haiyan ;
Zhang, Houwang ;
Jiang, Jingxuan ;
Wei, Jianyong ;
Wang, Dan ;
Tan, Guang ;
Song, Xinyu ;
Zhu, Jinyu ;
Zhao, Qianqian ;
Ai, Songtao ;
Shang, Ai ;
Li, Zhaohui ;
Zhang, Ya ;
Li, Yuehua .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2024, 6 (06)
[28]   Brain Vessel Segmentation Using Deep Learning-A Review [J].
Goni, Mohammad Raihan ;
Ruhaiyem, Nur Intan Raihana ;
Mustapha, Muzaimi ;
Achuthan, Anusha ;
Nassir, Che Mohd Nasril Che Mohd .
IEEE ACCESS, 2022, 10 :111322-111336
[29]   Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound [J].
Milletari, Fausto ;
Ahmadi, Seyed-Ahmad ;
Kroll, Christine ;
Plate, Annika ;
Rozanski, Verena ;
Maiostre, Juliana ;
Levin, Johannes ;
Dietrich, Olaf ;
Ertl-Wagner, Birgit ;
Boetzel, Kai ;
Navab, Nassir .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 164 :92-102
[30]   Modeling the Variability in Brain Morphology and Lesion Distribution in Multiple Sclerosis by Deep Learning [J].
Brosch, Tom ;
Yoo, Youngjin ;
Li, David K. B. ;
Traboulsee, Anthony ;
Tam, Roger .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT II, 2014, 8674 :462-469