Blind MRI Brain Lesion Inpainting Using Deep Learning

被引:9
作者
Manjon, Jose V. [1 ]
Romero, Jose E. [1 ]
Vivo-Hernando, Roberto [2 ]
Rubio, Gregorio [3 ]
Aparici, Fernando [4 ]
de la Iglesia-Vaya, Maria [5 ]
Tourdias, Thomas [6 ]
Coupe, Pierrick [7 ]
机构
[1] Univ Politecn Valencia, Inst Aplicaciones las Tecnol Informac & Comunicac, Camino Vera S-N, Valencia 46022, Spain
[2] Univ Politecn Valencia, Inst Automat & Informat Ind, Camino Vera S-N, Valencia 46022, Spain
[3] Univ Politecn Valencia, Dept Matemat Aplicada, Camino Vera S-N, Valencia 46022, Spain
[4] Hosp Univ & Politecn La Fe, Area Imagen Med, Valencia, Spain
[5] Brain Connect Lab, Joint Unit FISABIO & Prince Felipe Res Ctr CIPF, Valencia, Spain
[6] CHU Bordeaux, Serv Neuroimagerie Diagnost & Therapeut, F-33076 Bordeaux, France
[7] CNRS, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France
来源
SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2020 | 2020年 / 12417卷
关键词
Lesion inpainting; MRI; Deep learning; Robust segmentation; IMAGES;
D O I
10.1007/978-3-030-59520-3_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In brain image analysis many of the current pipelines are not robust to the presence of lesions which degrades their accuracy and robustness. For example, performance of classic medical image processing operations such as non-linear registration or segmentation rapidly decreases when dealing with lesions. To minimize their impact, some authors have proposed to inpaint these lesions so classic pipelines can be used. However, this requires to manually delineate the regions of interest which is time consuming. In this paper, we propose a deep network that is able to blindly inpaint lesions in brain images automatically allowing current pipelines to robustly operate under pathological conditions. We demonstrate the improved robustness/accuracy in the brain segmentation problem using the SPM12 pipeline with our automatically inpainted images.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
  • [21] Brain MRI analysis using a deep learning based evolutionary approach
    Shahamat, Hossein
    Abadeh, Mohammad Saniee
    NEURAL NETWORKS, 2020, 126 (218-234) : 218 - 234
  • [22] Automated Brain Tumor Segmentation and Classification in MRI Using YOLO-Based Deep Learning
    Almufareh, Maram Fahaad
    Imran, Muhammad
    Khan, Abdullah
    Humayun, Mamoona
    Asim, Muhammad
    IEEE ACCESS, 2024, 12 : 16189 - 16207
  • [23] A diagnosis model for brain atrophy using deep learning and MRI of type 2 diabetes mellitus
    Syed, Saba Raoof
    Durai, M. A. Saleem
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [24] Review of MRI-based brain tumor image segmentation using deep learning methods
    Isin, Ali
    Direkoglu, Cem
    Sah, Melike
    12TH INTERNATIONAL CONFERENCE ON APPLICATION OF FUZZY SYSTEMS AND SOFT COMPUTING, ICAFS 2016, 2016, 102 : 317 - 324
  • [25] Fully Automated Brain Tumor Segmentation and Survival Prediction of Gliomas Using Deep Learning and MRI
    Yogananda, Chandan Ganesh Bangalore
    Wagner, Ben
    Nalawade, Sahil S.
    Murugesan, Gowtham K.
    Pinho, Marco C.
    Fei, Baowei
    Madhuranthakam, Ananth J.
    Maldjian, Joseph A.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 99 - 112
  • [26] A deep learning approach for the early diagnosis of Parkinson's disease using brain MRI scans
    Mishra, Rishik
    Jalal, Anand Singh
    Kumar, Manoj
    Jalal, Sunita
    INTERNATIONAL JOURNAL OF APPLIED PATTERN RECOGNITION, 2022, 7 (01) : 64 - 77
  • [27] Brain Vessel Segmentation Using Deep Learning-A Review
    Goni, Mohammad Raihan
    Ruhaiyem, Nur Intan Raihana
    Mustapha, Muzaimi
    Achuthan, Anusha
    Nassir, Che Mohd Nasril Che Mohd
    IEEE ACCESS, 2022, 10 : 111322 - 111336
  • [28] Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound
    Milletari, Fausto
    Ahmadi, Seyed-Ahmad
    Kroll, Christine
    Plate, Annika
    Rozanski, Verena
    Maiostre, Juliana
    Levin, Johannes
    Dietrich, Olaf
    Ertl-Wagner, Birgit
    Boetzel, Kai
    Navab, Nassir
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 164 : 92 - 102
  • [29] Modeling the Variability in Brain Morphology and Lesion Distribution in Multiple Sclerosis by Deep Learning
    Brosch, Tom
    Yoo, Youngjin
    Li, David K. B.
    Traboulsee, Anthony
    Tam, Roger
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT II, 2014, 8674 : 462 - 469
  • [30] deepPGSegNet: MRI-based pituitary gland segmentation using deep learning
    Choi, Uk-Su
    Sung, Yul-Wan
    Ogawa, Seiji
    FRONTIERS IN ENDOCRINOLOGY, 2024, 15