Blind MRI Brain Lesion Inpainting Using Deep Learning

被引:9
|
作者
Manjon, Jose V. [1 ]
Romero, Jose E. [1 ]
Vivo-Hernando, Roberto [2 ]
Rubio, Gregorio [3 ]
Aparici, Fernando [4 ]
de la Iglesia-Vaya, Maria [5 ]
Tourdias, Thomas [6 ]
Coupe, Pierrick [7 ]
机构
[1] Univ Politecn Valencia, Inst Aplicaciones las Tecnol Informac & Comunicac, Camino Vera S-N, Valencia 46022, Spain
[2] Univ Politecn Valencia, Inst Automat & Informat Ind, Camino Vera S-N, Valencia 46022, Spain
[3] Univ Politecn Valencia, Dept Matemat Aplicada, Camino Vera S-N, Valencia 46022, Spain
[4] Hosp Univ & Politecn La Fe, Area Imagen Med, Valencia, Spain
[5] Brain Connect Lab, Joint Unit FISABIO & Prince Felipe Res Ctr CIPF, Valencia, Spain
[6] CHU Bordeaux, Serv Neuroimagerie Diagnost & Therapeut, F-33076 Bordeaux, France
[7] CNRS, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France
来源
SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2020 | 2020年 / 12417卷
关键词
Lesion inpainting; MRI; Deep learning; Robust segmentation; IMAGES;
D O I
10.1007/978-3-030-59520-3_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In brain image analysis many of the current pipelines are not robust to the presence of lesions which degrades their accuracy and robustness. For example, performance of classic medical image processing operations such as non-linear registration or segmentation rapidly decreases when dealing with lesions. To minimize their impact, some authors have proposed to inpaint these lesions so classic pipelines can be used. However, this requires to manually delineate the regions of interest which is time consuming. In this paper, we propose a deep network that is able to blindly inpaint lesions in brain images automatically allowing current pipelines to robustly operate under pathological conditions. We demonstrate the improved robustness/accuracy in the brain segmentation problem using the SPM12 pipeline with our automatically inpainted images.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
  • [1] Automated claustrum segmentation in human brain MRI using deep learning
    Li, Hongwei
    Menegaux, Aurore
    Schmitz-Koep, Benita
    Neubauer, Antonia
    Baeuerlein, Felix J. B.
    Shit, Suprosanna
    Sorg, Christian
    Menze, Bjoern
    Hedderich, Dennis
    HUMAN BRAIN MAPPING, 2021, 42 (18) : 5862 - 5872
  • [2] Role of deep learning in infant brain MRI analysis
    Mostapha, Mahmoud
    Styner, Martin
    MAGNETIC RESONANCE IMAGING, 2019, 64 : 171 - 189
  • [3] AGE ESTIMATION FROM BRAIN MRI IMAGES USING DEEP LEARNING
    Huang, Tzu-Wei
    Chen, Hwann-Tzong
    Fujimoto, Ryuichi
    Ito, Koichi
    Wu, Kai
    Sato, Kazunori
    Taki, Yasuyuki
    Fukuda, Hiroshi
    Aoki, Takafumi
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 849 - 852
  • [4] Brain MR Atlas Construction Using Symmetric Deep Neural Inpainting
    Xing, Fangxu
    Liu, Xiaofeng
    Kuo, C-C Jay
    El Fakhri, Georges
    Woo, Jonghye
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (07) : 3185 - 3196
  • [5] Brain Tumor Detection and Classification Using Deep Learning Models on MRI Scans
    Reddy L.C.S.
    Elangovan M.
    Vamsikrishna M.
    Ravindra C.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2024, 10
  • [6] Trends in brain MRI and CP association using deep learning
    Hassan, Muhammad
    Lin, Jieqiong
    Fateh, Ahmad Ameen
    Zhuang, Yijiang
    Lin, Guisen
    Khan, Dawar
    Mohammed, Adam A. Q.
    Zeng, Hongwu
    RADIOLOGIA MEDICA, 2024, 129 (11): : 1667 - 1681
  • [7] Deep Transfer Learning for Schizophrenia Detection Using Brain MRI
    Mudholkar, Siddhant
    Agrawal, Amitesh
    Sisodia, Dilip Singh
    Jagat, Rikhi Ram
    BIOMEDICAL ENGINEERING SCIENCE AND TECHNOLOGY, ICBEST 2023, 2024, 2003 : 66 - 82
  • [8] Stroke detection in the brain using MRI and deep learning models
    Subba Rao Polamuri
    Multimedia Tools and Applications, 2025, 84 (12) : 10489 - 10506
  • [9] Accurate segmentation of neonatal brain MRI with deep learning
    Richter, Leonie
    Fetit, Ahmed E.
    FRONTIERS IN NEUROINFORMATICS, 2022, 16
  • [10] Deep learning for MRI lesion segmentation in rectal cancer
    Yang, Mingwei
    Yang, Miyang
    Yang, Lanlan
    Wang, Zhaochu
    Ye, Peiyun
    Chen, Chujie
    Fu, Liyuan
    Xu, Shangwen
    FRONTIERS IN MEDICINE, 2024, 11