High-pressure electrical resistivity and Moossbauer spectroscopic studies on narrow band Co0.8Fe0.2S2 nanoparticles up to 8 GPa

被引:8
作者
Chandra, Usha [1 ]
Zuburtikudis, I. [2 ]
Parthasarathy, G. [3 ]
Sreedhar, B. [4 ]
机构
[1] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India
[2] Technol Educ Inst West Macedonia Hellas, Dept Ind Design Engn, Kozani, Greece
[3] CSIR, Natl Geophys Res Inst, Mineral Phys Div, Hyderabad, Andhra Pradesh, India
[4] CSIR, Indian Inst Chem Technol, Inorgan & Phys Chem Div, Hyderabad, Andhra Pradesh, India
关键词
high pressure; Moossbauer spectroscopy; nanoparticles; electrical resistivity; pyrite; diamond anvil cell; MAGNETIC-PROPERTIES; MOSSBAUER; FES2;
D O I
10.1080/01411594.2013.854899
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Pyrite-structured Co0.8Fe0.2S2 colloid nanoparticles, synthesized using solution method with particle distribution around 3-4 nm determined by transmission electron microscope, were studied under high pressure up to 8 GPa using Fe-57 Mossbauer spectroscopy and electrical resistivity techniques. Drastic decrease in T-C by magnetic measurements indicated nanosize of the particle. Higher quadrupole splitting (QS) at ambient condition was due to large lattice strain and electric field gradient generated by higher surface to volume ratio of these nanosized particles. Under pressure, Mossbauer parameters - isomer shift and QS - showed an expected trend up to similar to 5.6 GPa. Above 6.4 GPa, the QS remained constant up to 8 GPa with decreased value. Even after decompression, the high-pressure phase is retained. The variation of pressure coefficient of electrical resistivity from -0.021/GPa to -0.151/GPa across 6.8 GPa suggested a second-order phase transition. The coincidence of observed value with that of the bulk suggested that the particle size does not impart much influence on transition pressure. This is the first report on nanoparticles of Co0.8Fe0.2S2 under pressure.
引用
收藏
页码:477 / 490
页数:14
相关论文
共 27 条
[1]   High-pressure investigations of the itinerant ferromagnet CoS2 [J].
Barakat, S ;
Braithwaite, D ;
Alireza, P ;
Grube, K ;
Uhlarz, M ;
Wilson, J ;
Pfleiderer, C ;
Flouquet, J ;
Lonzarich, G .
PHYSICA B-CONDENSED MATTER, 2005, 359 :1216-1218
[2]  
Bither TA, 1968, INORG CHEM, V7, P19898
[3]   The band gap and electrical resistivity of FeS2-pyrite at high pressures [J].
Cervantes, P ;
Slanic, Z ;
Bridges, F ;
Knittle, E ;
Williams, Q .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2002, 63 (10) :1927-1933
[4]  
Chandra U, 2005, HYPERFINE INTERACT, V163, P129, DOI [10.1007/s10751-005-9001-y, 10.1007/s10751-004-9001-y]
[5]   MOSSBAUER EFFECT IN SYSTEM CO1-XFEXS2 [J].
GALLAGHER, PK ;
MACCHESNEY, JB ;
SHERWOOD, RC .
JOURNAL OF CHEMICAL PHYSICS, 1969, 50 (10) :4417-+
[6]   MOSSBAUER ELECTRIC-FIELD GRADIENT STUDY IN FES2 (PYRITE) [J].
GARG, VK ;
LIU, YS ;
PURI, SP .
JOURNAL OF APPLIED PHYSICS, 1974, 45 (01) :70-72
[7]  
Goto T, 1997, PHYS REV B
[8]   Crystallite size dependence on the magnetic properties of nanocrystalline magnetite powders [J].
Hartridge, A ;
Bhattacharya, AK ;
Sengupta, M ;
Majumdar, CK ;
Das, D ;
Chintalapudi, SN .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1997, 176 (2-3) :L89-L92
[9]   ELECTRIC-FIELD GRADIENT TENSOR IN FERROUS COMPOUNDS [J].
INGALLS, R .
PHYSICAL REVIEW, 1964, 133 (3A) :A787-+
[10]   EVIDENCE FOR ITINERANT D-ELECTRON FERROMAGNETISM [J].
JARRETT, HS ;
CLOUD, WH ;
BOUCHARD, RJ ;
BUTLER, SR ;
FREDERICK, CG ;
GILLSON, JL .
PHYSICAL REVIEW LETTERS, 1968, 21 (09) :617-+