共 31 条
A new methodology to assess the performance and uncertainty of source apportionment models II: The results of two European intercomparison exercises
被引:64
作者:
Belis, C. A.
[1
]
Karagulian, F.
[1
]
Amato, F.
[2
]
Almeida, M.
[3
]
Artaxo, P.
[4
]
Beddows, D. C. S.
[5
]
Bernardoni, V.
[6
,7
]
Bove, M. C.
[8
,9
]
Carbone, S.
[10
]
Cesari, D.
[11
]
Contini, D.
[11
]
Cuccia, E.
[8
,9
]
Diapouli, E.
[12
]
Eleftheriadis, K.
[12
]
Favez, O.
[13
]
El Haddad, I.
[14
]
Harrison, R. M.
[5
,15
]
Hellebust, S.
[16
]
Hovorka, J.
[17
]
Jang, E.
[5
]
Jorquera, H.
[18
]
Kammermeier, T.
[19
]
Karl, M.
[20
]
Lucarelli, F.
[21
,22
]
Mooibroek, D.
[23
]
Nava, S.
[21
,22
]
Nojgaard, J. K.
[24
]
Paatero, P.
[25
]
Pandolfi, M.
[2
]
Perrone, M. G.
[26
]
Petit, J. E.
[14
,29
]
Pietrodangelo, A.
[27
]
Pokorna, P.
[17
]
Prati, P.
[10
]
Prevot, A. S. H.
[15
]
Quass, U.
[19
]
Querol, X.
[2
]
Saraga, D.
[28
]
Sciare, J.
[29
]
Sfetsos, A.
[28
]
Valli, G.
[8
,9
]
Vecchi, R.
[8
,9
]
Vestenius, M.
[11
]
Yubero, E.
[30
]
Hopke, P. K.
[31
]
机构:
[1] Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, I-21027 Ispra, VA, Italy
[2] Spanish Res Council IDAEA CSIC, Inst Environm Assessment & Water Res, Barcelona 08034, Spain
[3] Univ Lisbon, Inst Super Tecn, C2TN, P-2695066 Bobadela Lrs, Portugal
[4] Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil
[5] Univ Birmingham, Sch Geog Earth & Environm Sci, Div Environm Hlth & Risk Management, Birmingham B15 2TT, W Midlands, England
[6] Univ Milan, Dept Phys, I-20133 Milan, Italy
[7] INFN Milan, I-20133 Milan, Italy
[8] Univ Genoa, Dept Phys, I-14146 Genoa, Italy
[9] INFN, I-14146 Genoa, Italy
[10] Finnish Meteorol Inst, Atmospher Composit Res, FI-00101 Helsinki, Finland
[11] Ist Sci Atmosfera & Clima, I-73100 Lecce, Italy
[12] NCSR Demokritos, Inst Nucl & Radiol Sci & Technol Energy & Safety, Athens 15341, Greece
[13] Inst Natl Environm Ind & Risques INERIS, Verneuil En Halatte, France
[14] Paul Scherrer Inst, LAC, Villigen, Switzerland
[15] King Abdulaziz Univ, Ctr Excellence Environm Studies, Dept Environm Sci, Jeddah 21589, Saudi Arabia
[16] Natl Univ Ireland Univ Coll Cork, Dept Chem, Ctr Res Atmospher Chem, Cork, Ireland
[17] Charles Univ Prague, Inst Environm Studies, Prague 12843 2, Czech Republic
[18] Pontificia Univ Catolica Chile, Dept Ingn Quim & Bioproc, Santiago 6904411, Chile
[19] Inst Energie & Umwelttech eV, IUTA eV, Bereich Luftreinhaltung & Nachhaltige Nanotechnol, D-47229 Duisburg, Germany
[20] Norwegian Inst Air Res NILU, Urban Environm & Ind, NO-2027 Kjeller, Norway
[21] Dept Phys & Astron, Florence, Italy
[22] Ist Nazl Fis Nucl, I-50125 Florence, Italy
[23] Natl Inst Publ Hlth & Environm, Ctr Environm Qual MIL, Dept Air & Noise Anal ILG, NL-3720 BA Bilthoven, Netherlands
[24] Aarhus Univ, Dept Environm Sci, DK-4000 Roskilde, Denmark
[25] Univ Helsinki, Dept Phys, FI-00970 Helsinki, Finland
[26] Univ Milano Bicocca, Dept Earth & Environm Sci, I-20126 Milan, Italy
[27] CNR, Inst Atmospher Pollut Res, Area Ric Roma 1, I-00015 Monterotondo, RM, Italy
[28] NCSR Demokritos, INRASTES, Aghia Paraskevi 15310, Greece
[29] CNRS LSCE, Gif Sur Yvette, France
[30] Miguel Hernandez Univ, Lab Atmospher Pollut LCA, Elche 03202, Spain
[31] Clarkson Univ, Ctr Air Resources Engn & Sci, Potsdam, NY 13699 USA
关键词:
Source apportionment;
Receptor models;
Intercomparison exercise;
Model performance indicators;
Model uncertainty;
Particulate matter;
PM SOURCE APPORTIONMENT;
PARTICULATE MATTER;
RECEPTOR MODELS;
AIR-QUALITY;
POLLUTION;
D O I:
10.1016/j.atmosenv.2015.10.068
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
The performance and the uncertainty of receptor models (RMs) were assessed in intercomparison exercises employing real-world and synthetic input datasets. To that end, the results obtained by different practitioners using ten different RMs were compared with a reference. In order to explain the differences in the performances and uncertainties of the different approaches, the apportioned mass, the number of sources, the chemical profiles, the contribution-to-species and the time trends of the sources were all evaluated using the methodology described in Bells et al. (2015). In this study, 87% of the 344 source contribution estimates (SCEs) reported by participants in 47 different source apportionment model results met the 50% standard uncertainty quality objective established for the performance test. In addition, 68% of the SCE uncertainties reported in the results were coherent with the analytical uncertainties in the input data. The most used models, EPA-PMF v.3, PMF2 and EPA-CMB 8.2, presented quite satisfactory performances in the estimation of SCEs while unconstrained models, that do not account for the uncertainty in the input data (e.g. APCS and FA-MLRA), showed below average performance. Sources with well-defined chemical profiles and seasonal time trends, that make appreciable contributions (>10%), were those better quantified by the models while those with contributions to the PM mass close to 1% represented a challenge. The results of the assessment indicate that RMs are capable of estimating the contribution of the major pollution source categories over a given time window with a level of accuracy that is in line with the needs of air quality management. (C) 2015 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:240 / 250
页数:11
相关论文