A new methodology to assess the performance and uncertainty of source apportionment models II: The results of two European intercomparison exercises

被引:64
作者
Belis, C. A. [1 ]
Karagulian, F. [1 ]
Amato, F. [2 ]
Almeida, M. [3 ]
Artaxo, P. [4 ]
Beddows, D. C. S. [5 ]
Bernardoni, V. [6 ,7 ]
Bove, M. C. [8 ,9 ]
Carbone, S. [10 ]
Cesari, D. [11 ]
Contini, D. [11 ]
Cuccia, E. [8 ,9 ]
Diapouli, E. [12 ]
Eleftheriadis, K. [12 ]
Favez, O. [13 ]
El Haddad, I. [14 ]
Harrison, R. M. [5 ,15 ]
Hellebust, S. [16 ]
Hovorka, J. [17 ]
Jang, E. [5 ]
Jorquera, H. [18 ]
Kammermeier, T. [19 ]
Karl, M. [20 ]
Lucarelli, F. [21 ,22 ]
Mooibroek, D. [23 ]
Nava, S. [21 ,22 ]
Nojgaard, J. K. [24 ]
Paatero, P. [25 ]
Pandolfi, M. [2 ]
Perrone, M. G. [26 ]
Petit, J. E. [14 ,29 ]
Pietrodangelo, A. [27 ]
Pokorna, P. [17 ]
Prati, P. [10 ]
Prevot, A. S. H. [15 ]
Quass, U. [19 ]
Querol, X. [2 ]
Saraga, D. [28 ]
Sciare, J. [29 ]
Sfetsos, A. [28 ]
Valli, G. [8 ,9 ]
Vecchi, R. [8 ,9 ]
Vestenius, M. [11 ]
Yubero, E. [30 ]
Hopke, P. K. [31 ]
机构
[1] Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, I-21027 Ispra, VA, Italy
[2] Spanish Res Council IDAEA CSIC, Inst Environm Assessment & Water Res, Barcelona 08034, Spain
[3] Univ Lisbon, Inst Super Tecn, C2TN, P-2695066 Bobadela Lrs, Portugal
[4] Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil
[5] Univ Birmingham, Sch Geog Earth & Environm Sci, Div Environm Hlth & Risk Management, Birmingham B15 2TT, W Midlands, England
[6] Univ Milan, Dept Phys, I-20133 Milan, Italy
[7] INFN Milan, I-20133 Milan, Italy
[8] Univ Genoa, Dept Phys, I-14146 Genoa, Italy
[9] INFN, I-14146 Genoa, Italy
[10] Finnish Meteorol Inst, Atmospher Composit Res, FI-00101 Helsinki, Finland
[11] Ist Sci Atmosfera & Clima, I-73100 Lecce, Italy
[12] NCSR Demokritos, Inst Nucl & Radiol Sci & Technol Energy & Safety, Athens 15341, Greece
[13] Inst Natl Environm Ind & Risques INERIS, Verneuil En Halatte, France
[14] Paul Scherrer Inst, LAC, Villigen, Switzerland
[15] King Abdulaziz Univ, Ctr Excellence Environm Studies, Dept Environm Sci, Jeddah 21589, Saudi Arabia
[16] Natl Univ Ireland Univ Coll Cork, Dept Chem, Ctr Res Atmospher Chem, Cork, Ireland
[17] Charles Univ Prague, Inst Environm Studies, Prague 12843 2, Czech Republic
[18] Pontificia Univ Catolica Chile, Dept Ingn Quim & Bioproc, Santiago 6904411, Chile
[19] Inst Energie & Umwelttech eV, IUTA eV, Bereich Luftreinhaltung & Nachhaltige Nanotechnol, D-47229 Duisburg, Germany
[20] Norwegian Inst Air Res NILU, Urban Environm & Ind, NO-2027 Kjeller, Norway
[21] Dept Phys & Astron, Florence, Italy
[22] Ist Nazl Fis Nucl, I-50125 Florence, Italy
[23] Natl Inst Publ Hlth & Environm, Ctr Environm Qual MIL, Dept Air & Noise Anal ILG, NL-3720 BA Bilthoven, Netherlands
[24] Aarhus Univ, Dept Environm Sci, DK-4000 Roskilde, Denmark
[25] Univ Helsinki, Dept Phys, FI-00970 Helsinki, Finland
[26] Univ Milano Bicocca, Dept Earth & Environm Sci, I-20126 Milan, Italy
[27] CNR, Inst Atmospher Pollut Res, Area Ric Roma 1, I-00015 Monterotondo, RM, Italy
[28] NCSR Demokritos, INRASTES, Aghia Paraskevi 15310, Greece
[29] CNRS LSCE, Gif Sur Yvette, France
[30] Miguel Hernandez Univ, Lab Atmospher Pollut LCA, Elche 03202, Spain
[31] Clarkson Univ, Ctr Air Resources Engn & Sci, Potsdam, NY 13699 USA
关键词
Source apportionment; Receptor models; Intercomparison exercise; Model performance indicators; Model uncertainty; Particulate matter; PM SOURCE APPORTIONMENT; PARTICULATE MATTER; RECEPTOR MODELS; AIR-QUALITY; POLLUTION;
D O I
10.1016/j.atmosenv.2015.10.068
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The performance and the uncertainty of receptor models (RMs) were assessed in intercomparison exercises employing real-world and synthetic input datasets. To that end, the results obtained by different practitioners using ten different RMs were compared with a reference. In order to explain the differences in the performances and uncertainties of the different approaches, the apportioned mass, the number of sources, the chemical profiles, the contribution-to-species and the time trends of the sources were all evaluated using the methodology described in Bells et al. (2015). In this study, 87% of the 344 source contribution estimates (SCEs) reported by participants in 47 different source apportionment model results met the 50% standard uncertainty quality objective established for the performance test. In addition, 68% of the SCE uncertainties reported in the results were coherent with the analytical uncertainties in the input data. The most used models, EPA-PMF v.3, PMF2 and EPA-CMB 8.2, presented quite satisfactory performances in the estimation of SCEs while unconstrained models, that do not account for the uncertainty in the input data (e.g. APCS and FA-MLRA), showed below average performance. Sources with well-defined chemical profiles and seasonal time trends, that make appreciable contributions (>10%), were those better quantified by the models while those with contributions to the PM mass close to 1% represented a challenge. The results of the assessment indicate that RMs are capable of estimating the contribution of the major pollution source categories over a given time window with a level of accuracy that is in line with the needs of air quality management. (C) 2015 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:240 / 250
页数:11
相关论文
共 31 条
  • [31] Source apportionment: Findings from the US Supersites program
    Watson, John G.
    Chen, L. W. Anthony
    Chow, Judith C.
    Doraiswamy, Prakash
    Lowenthal, Douglas H.
    [J]. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2008, 58 (02) : 265 - 288