A new methodology to assess the performance and uncertainty of source apportionment models II: The results of two European intercomparison exercises

被引:64
作者
Belis, C. A. [1 ]
Karagulian, F. [1 ]
Amato, F. [2 ]
Almeida, M. [3 ]
Artaxo, P. [4 ]
Beddows, D. C. S. [5 ]
Bernardoni, V. [6 ,7 ]
Bove, M. C. [8 ,9 ]
Carbone, S. [10 ]
Cesari, D. [11 ]
Contini, D. [11 ]
Cuccia, E. [8 ,9 ]
Diapouli, E. [12 ]
Eleftheriadis, K. [12 ]
Favez, O. [13 ]
El Haddad, I. [14 ]
Harrison, R. M. [5 ,15 ]
Hellebust, S. [16 ]
Hovorka, J. [17 ]
Jang, E. [5 ]
Jorquera, H. [18 ]
Kammermeier, T. [19 ]
Karl, M. [20 ]
Lucarelli, F. [21 ,22 ]
Mooibroek, D. [23 ]
Nava, S. [21 ,22 ]
Nojgaard, J. K. [24 ]
Paatero, P. [25 ]
Pandolfi, M. [2 ]
Perrone, M. G. [26 ]
Petit, J. E. [14 ,29 ]
Pietrodangelo, A. [27 ]
Pokorna, P. [17 ]
Prati, P. [10 ]
Prevot, A. S. H. [15 ]
Quass, U. [19 ]
Querol, X. [2 ]
Saraga, D. [28 ]
Sciare, J. [29 ]
Sfetsos, A. [28 ]
Valli, G. [8 ,9 ]
Vecchi, R. [8 ,9 ]
Vestenius, M. [11 ]
Yubero, E. [30 ]
Hopke, P. K. [31 ]
机构
[1] Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, I-21027 Ispra, VA, Italy
[2] Spanish Res Council IDAEA CSIC, Inst Environm Assessment & Water Res, Barcelona 08034, Spain
[3] Univ Lisbon, Inst Super Tecn, C2TN, P-2695066 Bobadela Lrs, Portugal
[4] Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil
[5] Univ Birmingham, Sch Geog Earth & Environm Sci, Div Environm Hlth & Risk Management, Birmingham B15 2TT, W Midlands, England
[6] Univ Milan, Dept Phys, I-20133 Milan, Italy
[7] INFN Milan, I-20133 Milan, Italy
[8] Univ Genoa, Dept Phys, I-14146 Genoa, Italy
[9] INFN, I-14146 Genoa, Italy
[10] Finnish Meteorol Inst, Atmospher Composit Res, FI-00101 Helsinki, Finland
[11] Ist Sci Atmosfera & Clima, I-73100 Lecce, Italy
[12] NCSR Demokritos, Inst Nucl & Radiol Sci & Technol Energy & Safety, Athens 15341, Greece
[13] Inst Natl Environm Ind & Risques INERIS, Verneuil En Halatte, France
[14] Paul Scherrer Inst, LAC, Villigen, Switzerland
[15] King Abdulaziz Univ, Ctr Excellence Environm Studies, Dept Environm Sci, Jeddah 21589, Saudi Arabia
[16] Natl Univ Ireland Univ Coll Cork, Dept Chem, Ctr Res Atmospher Chem, Cork, Ireland
[17] Charles Univ Prague, Inst Environm Studies, Prague 12843 2, Czech Republic
[18] Pontificia Univ Catolica Chile, Dept Ingn Quim & Bioproc, Santiago 6904411, Chile
[19] Inst Energie & Umwelttech eV, IUTA eV, Bereich Luftreinhaltung & Nachhaltige Nanotechnol, D-47229 Duisburg, Germany
[20] Norwegian Inst Air Res NILU, Urban Environm & Ind, NO-2027 Kjeller, Norway
[21] Dept Phys & Astron, Florence, Italy
[22] Ist Nazl Fis Nucl, I-50125 Florence, Italy
[23] Natl Inst Publ Hlth & Environm, Ctr Environm Qual MIL, Dept Air & Noise Anal ILG, NL-3720 BA Bilthoven, Netherlands
[24] Aarhus Univ, Dept Environm Sci, DK-4000 Roskilde, Denmark
[25] Univ Helsinki, Dept Phys, FI-00970 Helsinki, Finland
[26] Univ Milano Bicocca, Dept Earth & Environm Sci, I-20126 Milan, Italy
[27] CNR, Inst Atmospher Pollut Res, Area Ric Roma 1, I-00015 Monterotondo, RM, Italy
[28] NCSR Demokritos, INRASTES, Aghia Paraskevi 15310, Greece
[29] CNRS LSCE, Gif Sur Yvette, France
[30] Miguel Hernandez Univ, Lab Atmospher Pollut LCA, Elche 03202, Spain
[31] Clarkson Univ, Ctr Air Resources Engn & Sci, Potsdam, NY 13699 USA
关键词
Source apportionment; Receptor models; Intercomparison exercise; Model performance indicators; Model uncertainty; Particulate matter; PM SOURCE APPORTIONMENT; PARTICULATE MATTER; RECEPTOR MODELS; AIR-QUALITY; POLLUTION;
D O I
10.1016/j.atmosenv.2015.10.068
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The performance and the uncertainty of receptor models (RMs) were assessed in intercomparison exercises employing real-world and synthetic input datasets. To that end, the results obtained by different practitioners using ten different RMs were compared with a reference. In order to explain the differences in the performances and uncertainties of the different approaches, the apportioned mass, the number of sources, the chemical profiles, the contribution-to-species and the time trends of the sources were all evaluated using the methodology described in Bells et al. (2015). In this study, 87% of the 344 source contribution estimates (SCEs) reported by participants in 47 different source apportionment model results met the 50% standard uncertainty quality objective established for the performance test. In addition, 68% of the SCE uncertainties reported in the results were coherent with the analytical uncertainties in the input data. The most used models, EPA-PMF v.3, PMF2 and EPA-CMB 8.2, presented quite satisfactory performances in the estimation of SCEs while unconstrained models, that do not account for the uncertainty in the input data (e.g. APCS and FA-MLRA), showed below average performance. Sources with well-defined chemical profiles and seasonal time trends, that make appreciable contributions (>10%), were those better quantified by the models while those with contributions to the PM mass close to 1% represented a challenge. The results of the assessment indicate that RMs are capable of estimating the contribution of the major pollution source categories over a given time window with a level of accuracy that is in line with the needs of air quality management. (C) 2015 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:240 / 250
页数:11
相关论文
共 31 条
  • [1] Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2
    Amato, F.
    Pandolfi, M.
    Escrig, A.
    Querol, X.
    Alastuey, A.
    Pey, J.
    Perez, N.
    Hopke, P. K.
    [J]. ATMOSPHERIC ENVIRONMENT, 2009, 43 (17) : 2770 - 2780
  • [2] Analytical Methods Committee, 1989, ANALYST, V114, P1697
  • [3] [Anonymous], 2005, 13528 ISO
  • [4] [Anonymous], 2010, Pollut. Atmospher.
  • [5] A new methodology to assess the performance and uncertainty of source apportionment models in intercomparison exercises
    Belis, C. A.
    Pernigotti, D.
    Karagulian, F.
    Pirovano, G.
    Larsen, B. R.
    Gerboles, M.
    Hopke, P. K.
    [J]. ATMOSPHERIC ENVIRONMENT, 2015, 119 : 35 - 44
  • [6] Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe
    Belis, C. A.
    Karagulian, F.
    Larsen, B. R.
    Hopke, P. K.
    [J]. ATMOSPHERIC ENVIRONMENT, 2013, 69 : 94 - 108
  • [7] Bells C.A., 2014, EUROPEAN GUIDE AIR P, P88
  • [8] Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO
    DeCarlo, P. F.
    Ulbrich, I. M.
    Crounse, J.
    de Foy, B.
    Dunlea, E. J.
    Aiken, A. C.
    Knapp, D.
    Weinheimer, A. J.
    Campos, T.
    Wennberg, P. O.
    Jimenez, J. L.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (12) : 5257 - 5280
  • [9] Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France)
    Favez, O.
    El Haddad, I.
    Piot, C.
    Boreave, A.
    Abidi, E.
    Marchand, N.
    Jaffrezo, J. -L.
    Besombes, J. -L.
    Personnaz, M. -B.
    Sciare, J.
    Wortham, H.
    George, C.
    D'Anna, B.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (12) : 5295 - 5314
  • [10] CHEMICAL ELEMENT BALANCES AND IDENTIFICATION OF AIR-POLLUTION SOURCES
    FRIEDLANDER, SK
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1973, 7 (03) : 235 - 240