Predicting protein complex membership using probabilistic network reliability

被引:120
作者
Asthana, S [1 ]
King, OD [1 ]
Gibbons, FD [1 ]
Roth, FP [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
D O I
10.1101/gr.2203804
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Evidence for specific protein-protein interactions is increasingly available from both small- and large-scale studies, and can be viewed as a network. It has previously been noted that errors are frequent among large-scale studies, and that error frequency depends on the large-scale method used. Despite knowledge of the error-prone nature of interaction evidence, edges (connections) in this network are typically viewed as either present or absent. However, use of a probabilistic network that considers quantity and quality of supporting evidence should improve inference derived from protein networks. Here we demonstrate inference of membership in a partially known protein complex by using a probabilistic network model and an algorithm previously used to evaluate reliability in communication networks.
引用
收藏
页码:1170 / 1175
页数:6
相关论文
共 39 条
[1]  
Bader GD, 2003, NUCLEIC ACIDS RES, V31, P248, DOI 10.1093/nar/gkg056
[2]   Analyzing yeast protein-protein interaction data obtained from different sources [J].
Bader, GD ;
Hogue, CWV .
NATURE BIOTECHNOLOGY, 2002, 20 (10) :991-997
[3]  
BAER GD, 2003, BMC BIOINFORMATICS, V4, P2
[5]  
Batagelj V., 1998, Connections, V21, P47
[6]   Elg1 forms an alternative RFC complex important for DNA replication and genome integrity [J].
Bellaoui, M ;
Chang, M ;
Ou, JW ;
Xu, H ;
Boone, C ;
Brown, GW .
EMBO JOURNAL, 2003, 22 (16) :4304-4313
[7]   Topological structure analysis of the protein-protein interaction network in budding yeast [J].
Bu, DB ;
Zhao, Y ;
Cai, L ;
Xue, H ;
Zhu, XP ;
Lu, HC ;
Zhang, JF ;
Sun, SW ;
Ling, LJ ;
Zhang, N ;
Li, GJ ;
Chen, RS .
NUCLEIC ACIDS RESEARCH, 2003, 31 (09) :2443-2450
[8]  
Colbourn C.J., 1987, The combinatorics of network reliability
[9]   NOT1(CDC39), NOT2(CDC36), NOT3, AND NOT4 ENCODE A GLOBAL-NEGATIVE REGULATOR OF TRANSCRIPTION THAT DIFFERENTIALLY AFFECTS TATA-ELEMENT UTILIZATION [J].
COLLART, MA ;
STRUHL, K .
GENES & DEVELOPMENT, 1994, 8 (05) :525-537
[10]  
CULLMANN G, 1995, MOL CELL BIOL, V15, P4661