Number of points of bounded height on Del Pezzo surfaces of degree 5

被引:26
作者
De La Bretèche, R [1 ]
机构
[1] Univ Paris 11, Dept Math, Lab Arithimet & Geometrie Algebrique Orsay, F-91405 Orsay, France
关键词
D O I
10.1215/S0012-7094-02-11332-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We state Manin's conjecture in the particular case of the split del Pezzo's surfaces of degree 5 over Q. We show that, for an open set U subset of V, N-U (Q) (B) : = card {P is an element of U (Q) : h(P) less than or equal to B} similar to CB (logB)(4) (B --> +infinity). The constant C is the one conjectured by E. Peyre.
引用
收藏
页码:421 / 464
页数:44
相关论文
共 21 条
[1]  
BATYREV V.V., 1996, J. Math. Sci., V82, P3220
[2]   THE NUMBER OF RATIONAL-POINTS OF BOUNDED HEIGHT OF ALGEBRAIC-VARIETIES [J].
BATYREV, VV ;
MANIN, YI .
MATHEMATISCHE ANNALEN, 1990, 286 (1-3) :27-43
[3]  
Batyrev VV, 1998, J ALGEBRAIC GEOM, V7, P15
[4]  
Batyrev VV, 1996, CR ACAD SCI I-MATH, V323, P41
[5]  
Batyrev VV., 1995, Intern. Math. Res. Not, V12, P591, DOI [10.1155/S1073792895000365, DOI 10.1155/S1073792895000365]
[7]  
Colliot-Thelene J.-L., 1980, JOURN GEOM ALG ANG J, P223
[8]   DESCENT FOR RATIONAL VARITIES .2. [J].
COLLIOTTHELENE, JL ;
SANSUC, JJ .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) :375-492
[9]  
Fouvry E, 1998, ASTERISQUE, P31
[10]   RATIONAL-POINTS OF BOUNDED HEIGHT ON FANO VARIETIES [J].
FRANKE, J ;
MANIN, YI ;
TSCHINKEL, Y .
INVENTIONES MATHEMATICAE, 1989, 95 (02) :421-435