Robust Symbol-Level Precoding Beyond CSI Models: A Probabilistic-Learning Based Approach

被引:0
作者
Zhang, Jianjun [1 ]
Masouros, Christos [1 ]
Rodrigues, Miguel [1 ]
机构
[1] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England
来源
2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM) | 2021年
基金
英国工程与自然科学研究理事会;
关键词
Probabilistic precoding; probabilistic-learning; robust symbol-level precoding; millimeter wave communication; MILLIMETER-WAVE COMMUNICATIONS; GREEN SIGNAL POWER; BEAM ALIGNMENT; INTERFERENCE; FEEDBACK; DOWNLINK;
D O I
10.1109/GLOBECOM46510.2021.9685545
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The use of large-scale antenna arrays poses great difficulties in obtaining perfect channel state information (CSI) in multi-antenna communication systems, which is essential for precoding optimization. To tackle this issue, in this paper we propose a probabilistic-learning based approach (PLA), aiming at alleviating the requirement of perfect CSI. The rationale is that the existing precoding algorithms that output a single precoder are often overconfident in their abilities and the obtained CSI. To avoid overconfidence, we incorporate the idea of regularization in machine learning (ML) into precoding models, so as to limit representative abilities of the precoding models. Compared to the state-of-the-art robust precoding designs, an important advantage of PLA is that CSI uncertainty models are not required. As a specific application of PLA, we design an efficient robust symbollevel hybrid precoding algorithm for the millimeter wave system and confirm the effectiveness of PLA via simulations.
引用
收藏
页数:6
相关论文
共 25 条
[1]   Deep Learning Coordinated Beamforming for Highly-Mobile Millimeter Wave Systems [J].
Alkhateeb, Ahmed ;
Alex, Sam ;
Varkey, Paul ;
Li, Ying ;
Qu, Qi ;
Tujkovic, Djordje .
IEEE ACCESS, 2018, 6 :37328-37348
[2]   Limited Feedback Hybrid Precoding for Multi-User Millimeter Wave Systems [J].
Alkhateeb, Ahmed ;
Leus, Geert ;
Heath, Robert W., Jr. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2015, 14 (11) :6481-6494
[3]  
Blundell C, 2015, PR MACH LEARN RES, V37, P1613
[4]   Spatially Sparse Precoding in Millimeter Wave MIMO Systems [J].
El Ayach, Omar ;
Rajagopal, Sridhar ;
Abu-Surra, Shadi ;
Pi, Zhouyue ;
Heath, Robert W., Jr. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2014, 13 (03) :1499-1513
[5]   Hybrid Precoding for Multiuser Millimeter Wave Massive MIMO Systems: A Deep Learning Approach [J].
Elbir, Ahmet M. ;
Papazafeiropoulos, Anastasios K. .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (01) :552-563
[6]   Near-Optimal Beam Selection for Beamspace MmWave Massive MIMO Systems [J].
Gao, Xinyu ;
Dai, Linglong ;
Chen, Zhijie ;
Wang, Zhaocheng ;
Zhang, Zhijun .
IEEE COMMUNICATIONS LETTERS, 2016, 20 (05) :1054-1057
[7]   Robust SINR-Constrained Symbol-Level Multiuser Precoding With Imperfect Channel Knowledge [J].
Haqiqatnejad, Alireza ;
Kayhan, Farbod ;
Ottersten, Bjorn .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 :1837-1852
[8]   Codebook-Based Hybrid Precoding for Millimeter Wave Multiuser Systems [J].
He, Shiwen ;
Wang, Jiaheng ;
Huang, Yongming ;
Ottersten, Bjorn ;
Hong, Wei .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (20) :5289-5304
[9]   Exploiting Known Interference as Green Signal Power for Downlink Beamforming Optimization [J].
Masouros, Christos ;
Zheng, Gan .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (14) :3628-3640
[10]   Vector Perturbation Based on Symbol Scaling for Limited Feedback MISO Downlinks [J].
Masouros, Christos ;
Sellathurai, Mathini ;
Ratnarajah, Tharmalingam .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (03) :562-571