Schubert varieties as variations of Hodge structure

被引:11
|
作者
Robles, C. [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2014年 / 20卷 / 03期
基金
美国国家科学基金会;
关键词
Schubert variety; Variation of Hodge structure; Infinitesimal period relation; Griffiths' transversality; Hodge theory; Mumford-Tate group; LIE ALGEBRA COHOMOLOGY; INFINITESIMAL VARIATIONS; MANIFOLDS; INVARIANT; INTEGRALS; PERIODS;
D O I
10.1007/s00029-014-0148-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We (1) characterize the Schubert varieties that arise as variations of Hodge structure (VHS); (2) show that the isotropy orbits of the infinitesimal Schubert VHS 'span' the space of all infinitesimal VHS; and (3) show that the cohomology classes dual to the Schubert VHS form a basis of the invariant characteristic cohomology associated with the infinitesimal period relation (a.k.a. Griffiths' transversality).
引用
收藏
页码:719 / 768
页数:50
相关论文
共 50 条
  • [21] Rigid Schubert varieties in compact Hermitian symmetric spaces
    Robles, C.
    The, D.
    SELECTA MATHEMATICA-NEW SERIES, 2012, 18 (03): : 717 - 777
  • [22] Rigid Schubert varieties in compact Hermitian symmetric spaces
    C. Robles
    D. The
    Selecta Mathematica, 2012, 18 : 717 - 777
  • [23] SCHUBERT VARIETIES AND DISTANCES BETWEEN SUBSPACES OF DIFFERENT DIMENSIONS
    Ye, Ke
    Lim, Lek-Heng
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (03) : 1176 - 1197
  • [24] Arithmetic of Degenerating Principal Variations of Hodge Structure: Examples Arising From Mirror Symmetry and Middle Convolution
    da Silva, Genival, Jr.
    Kerr, Matt
    Pearlstein, Gregory
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2016, 68 (02): : 280 - 308
  • [25] An effective decomposition theorem for Schubert varieties
    Cioffi, Francesca
    Franco, Davide
    Sessa, Carmine
    JOURNAL OF SYMBOLIC COMPUTATION, 2024, 121
  • [26] Maximally Clustered Elements and Schubert Varieties
    Jozsef Losonczy
    Annals of Combinatorics, 2007, 11 : 195 - 212
  • [27] LS algebras, valuations, and Schubert varieties
    Chirivi, Rocco
    Fang, Xin
    Littelmann, Peter
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2022, 33 (04) : 925 - 957
  • [28] Spherical Schubert varieties and pattern avoidance
    Gaetz, Christian
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (02):
  • [29] Spherical Schubert varieties and pattern avoidance
    Christian Gaetz
    Selecta Mathematica, 2022, 28
  • [30] Schur flexibility of cominuscule Schubert varieties
    Robles, C.
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2013, 21 (05) : 979 - 1013