Sampling expansion in function spaces associated with the linear canonical transform

被引:3
作者
Liu, Xiaoping [1 ]
Shi, Jun [1 ]
Sha, Xuejun [1 ]
Zhang, Naitong [1 ,2 ]
机构
[1] Harbin Inst Technol, Commun Res Ctr, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear canonical transform; Riesz bases; Frames; Function spaces; Sampling theorem; BAND-LIMITED SIGNALS; RECONSTRUCTION; DOMAIN;
D O I
10.1007/s11760-013-0507-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we investigate sampling expansion for the linear canonical transform (LCT) in function spaces. First, some properties of the function spaces related to the LCT are obtained. Then, a sampling theorem for the LCT in function spaces with a single-frame generator is derived by using the Zak Transform and its generalization to the LCT domain. Some examples are also presented.
引用
收藏
页码:143 / 148
页数:6
相关论文
共 20 条
[1]  
[Anonymous], 2000, FRACTIONAL FOURIER T
[2]  
Christensen Q., 2003, INTRO FRAMES RIESZ B
[3]   Space-bandwidth ratio as a means of choosing between Fresnel and other linear canonical transform algorithms [J].
Healy, John J. ;
Sheridan, John T. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2011, 28 (05) :786-790
[4]   Fast linear canonical transforms [J].
Healy, John J. ;
Sheridan, John T. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2010, 27 (01) :21-30
[5]   Sampling and discretization of the linear canonical transform [J].
Healy, John J. ;
Sheridan, John T. .
SIGNAL PROCESSING, 2009, 89 (04) :641-648
[6]   THE ZAK TRANSFORM AND SAMPLING THEOREMS FOR WAVELET SUBSPACES [J].
JANSSEN, AJEM .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (12) :3360-3364
[7]   New sampling formulae related to linear canonical transform [J].
Li, Bing-Zhao ;
Tao, Ran ;
Wang, Yue .
SIGNAL PROCESSING, 2007, 87 (05) :983-990
[8]   New sampling formulae for non-bandlimited signals associated with linear canonical transform and nonlinear Fourier atoms [J].
Liu, Yue-Lin ;
Kou, Kit-Ian ;
Ho, Io-Tong .
SIGNAL PROCESSING, 2010, 90 (03) :933-945
[9]   Relations between fractional operations and time-frequency distributions, and their applications [J].
Pei, SC ;
Ding, JJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (08) :1638-1655
[10]   Vector Sampling Expansions and Linear Canonical Transform [J].
Sharma, K. K. .
IEEE SIGNAL PROCESSING LETTERS, 2011, 18 (10) :583-586