Comparison of structure and electrochemical properties for 5 V LiNi0.5Mn1.5O4 and LiNi0.4Cr0.2Mn1.4O4 cathode materials

被引:48
作者
Yi, Ting-Feng [1 ]
Li, Chun-Yan [2 ]
Zhu, Yan-Rong [1 ]
Shu, Jie [3 ]
Zhu, Rong-Sun [1 ]
机构
[1] Anhui Univ Technol, Sch Chem & Chem Engn, Maanshan 243002, Peoples R China
[2] Mudanjiang Med Univ, Dept Pharm, Mudanjiang 157011, Heilongjiang, Peoples R China
[3] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Tsukuba, Ibaraki 3058568, Japan
关键词
Lithium ion battery; Cathode material; LiMn1.4Cr0.2Ni0.4O4; LiNi0.5Mn1.5O4; Electrochemical property; NANO-CRYSTALLINE LINI0.5MN1.5O4; LITHIUM-ION; SPINEL OXIDES; CR; ELECTRODES; INSERTION; BEHAVIOR; LIMN2O4;
D O I
10.1007/s10008-008-0628-x
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Spinel LiNi0.5Mn1.5O4 and LiMn1.4Cr0.2Ni0.4O4 cathode materials have been successfully synthesized by the sol-gel method using citric acid as a chelating agent. The structure and electrochemical performance of these as-prepared powders have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the galvanostatic charge-discharge test in detail. XRD results show that there is a small Li (y) Ni1-y O impurity peak placed close to the (4 0 0) line of the spinel LiNi0.5Mn1.5O4, and LiMn1.4Cr0.2Ni0.4O4 has high phase purity, and the powders are well crystallized. SEM indicates that LiMn1.4Cr0.2Ni0.4O4 has a slightly smaller particle size and a more regular morphological structure with narrow size distribution than those of LiNi0.5Mn1.5O4. Galvanostatic charge-discharge testing indicates that the initial discharge capacities of LiMn1.4Cr0.2Ni0.4O4 and LiNi0.5Mn1.5O4 cycled at 0.15 C are 129.6 and 130.2 mAh g(-1), respectively, and the capacity losses compared to the initial value, after 50 cycles, are 2.09% and 5.68%, respectively. LiMn1.4Cr0.2Ni0.4O4 cathode has a higher electrode coulombic efficiency than that of the LiNi0.5Mn1.5O4 cathode, implying that Ni and Cr dual substitution is beneficial to the reversible intercalation and de-intercalation of Li+.
引用
收藏
页码:913 / 919
页数:7
相关论文
共 31 条
[1]   Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells [J].
Aurbach, Doron ;
Markovsky, Boris ;
Talyossef, Yosef ;
Salitra, Gregory ;
Kim, Hyeong-Jin ;
Choi, Seungdon .
JOURNAL OF POWER SOURCES, 2006, 162 (02) :780-789
[2]  
Dean JA, 1992, LANGES HDB CHEM
[3]   Raman spectro-electrochemistry of LiCoxMn2-xO4 thin film electrodes for 5 V lithium batteries [J].
Dokko, K ;
Anzue, N ;
Mohamedi, M ;
Itoh, T ;
Uchida, I .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (04) :384-388
[4]   Mechanism for limited 55°C storage performance of Li1.05Mn1.95O4 electrodes [J].
Du Pasquier, A ;
Blyr, A ;
Courjal, P ;
Larcher, D ;
Amatucci, G ;
Gérand, B ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (02) :428-436
[5]   Exploration of high capacity LiNi0.5Mn1.5O4 synthesized by solid-state reaction [J].
Fang, HS ;
Wang, ZX ;
Li, XH ;
Guo, HJ ;
Peng, WJ .
JOURNAL OF POWER SOURCES, 2006, 153 (01) :174-176
[6]   Synthesis and electrochemical characteristics of LiCrxNi0.5-xMn1.5O4 spinel as 5 V cathode materials for lithium secondary batteries [J].
Hong, KJ ;
Sun, YK .
JOURNAL OF POWER SOURCES, 2002, 109 (02) :427-430
[7]   Single phase region of cation substituted spinel LiMyMn2-yO4-δ (M = Cr, Co and Ni) and cathode property for lithium secondary battery [J].
Hosoya, M ;
Ikuta, H ;
Wakihara, M .
SOLID STATE IONICS, 1998, 111 (1-2) :153-159
[8]   PREPARATION OF A NEW CRYSTAL FORM OF MANGANESE-DIOXIDE - LAMBDA-MNO2 [J].
HUNTER, JC .
JOURNAL OF SOLID STATE CHEMISTRY, 1981, 39 (02) :142-147
[9]   Dissolution of spinel oxides and capacity losses in 4V Li/LixMn2O4 coils [J].
Jang, DH ;
Shin, YJ ;
Oh, SM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (07) :2204-2211
[10]   Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery [J].
Kim, JH ;
Myung, ST ;
Sun, YK .
ELECTROCHIMICA ACTA, 2004, 49 (02) :219-227