Highly enhanced H2 gas sensing characteristics of Co:ZnO nanorods and its mechanism

被引:74
|
作者
Sett, Dipanwita [1 ]
Basak, Durga [1 ]
机构
[1] Indian Assoc Cultivat Sci, Dept Solid State Phys, Kolkata 700032, India
关键词
ZnO nanorods; Co doping; H-2; sensor; Oxygen vacancies; DOPED ZNO NANORODS; ROOM-TEMPERATURE; MAGNETIC-PROPERTIES; HYDROTHERMAL METHOD; THIN-FILM; SENSOR APPLICATIONS; HYDROGEN SENSORS; FACILE SYNTHESIS; ZINC-OXIDE; NANOPARTICLES;
D O I
10.1016/j.snb.2016.11.163
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We report here excellent H-2 gas response property of Co-doped ZnO nanorods (Co:ZnO NRs). Co:ZnO NRs have been synthesized by hydrothermal method by varying the Co content from 0 to 10 mol%. It is found that Co:ZnO NRs with 8 mol% of Co exhibits the highest and faster H-2 gas response ability compared to the undoped ZnO resulting in a 5 fold enhancement in the gas response in the presence of air at 150 degrees C. While the gas response value (S (%) = [(I-g-l(a))/l(a)] x 100, where la is the current of the sensors in the presence of air only and I-g is the current in the presence of certain H-2 concentration) to 3000 ppm H-2 for undoped ZnO NRs'sensor is 11%, an unprecedented high value of 53.7% is obtained for the Co:ZnO with 8 mol% of Co. Based on the electrical current and photoluminescence results, a mechanism for the enhanced H-2 response of Co:ZnO is proposed that involves donor-related oxygen vacancies (V-o) introduced by the Co dopants in the ZnO lattice. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:475 / 483
页数:9
相关论文
共 50 条
  • [21] Bifunctional Sensing Mechanism of SnO2-ZnO Composite Nanofibers for Drastically Enhancing the Sensing Behavior in H2 Gas
    Katoch, Akash
    Kim, Jae-Hun
    Kwon, Yong Jung
    Kim, Hyoun Woo
    Kim, Sang Sub
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (21) : 11351 - 11358
  • [22] ZnO nanorods grown on ZnO sol-gel seed films: Characteristics and optical gas-sensing properties
    Cittadini, M.
    Sturaro, M.
    Guglielmi, M.
    Resmini, A.
    Tredici, I. G.
    Anselmi-Tamburini, U.
    Koshy, P.
    Sorrell, C. C.
    Martucci, A.
    SENSORS AND ACTUATORS B-CHEMICAL, 2015, 213 : 493 - 500
  • [23] Indium-nickel oxide nanocomposite for room temperature H2 2 gas detection and its sensing mechanism
    Jiang, Yuxiao
    Hu, Kelin
    Zhang, Jing
    Hu, Yujuan
    Yang, Yuepeng
    Yin, Xihuan
    Huang, Peigen
    CERAMICS INTERNATIONAL, 2024, 50 (19) : 36428 - 36439
  • [24] Co/ZnO nanorods system for magnetic gas sensing applications
    Baratto, C.
    Rigoni, F.
    Cattabiani, N.
    Ferroni, M.
    Sberveglieri, G.
    Barrera, G.
    Tiberto, P.
    Allia, P.
    2016 IEEE SENSORS, 2016,
  • [25] Enhanced H2 gas sensing performances by Pd-loaded In2O3 microspheres
    Tang, Mingxin
    Qin, Cong
    Sun, Xueya
    Li, Mengwei
    Wang, Yihui
    Cao, Jianliang
    Wang, Yan
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2024, 130 (10):
  • [26] NO2 gas sensing properties of chemically grown Al doped ZnO nanorods
    Patil, V. L.
    Dalavi, D. S.
    Dhavale, S. B.
    Tarwal, N. L.
    Vanalakar, S. A.
    Kalekar, A. S.
    Kim, J. H.
    Patil, P. S.
    SENSORS AND ACTUATORS A-PHYSICAL, 2022, 340
  • [27] Influence of the Cu doping on the physical and H2 gas sensing properties of TiO2
    Sakar, Betul Ceviz
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 1197 - 1208
  • [28] Highly sensitive NO2 gas sensor based on Ag decorated ZnO nanorods
    Saini, Shubham
    Kumar, Arvind
    Ranwa, Sapana
    Tyagi, A. K.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2022, 128 (05):
  • [29] Amorphous Pd-assisted H2 detection of ZnO nanorod gas sensor with enhanced sensitivity and stability
    Kim, Hyeonghun
    Pak, Yusin
    Jeong, Yeonggyo
    Kim, Woochul
    Kim, Jeongnam
    Jung, Gun Young
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 262 : 460 - 468
  • [30] Study on gas sensing charateristics of ZnO-SnO2 gas sensor to H2
    Chen Weigen
    Li Qianzhu
    Gan Hongli
    PROCEEDINGS OF THE FIFTH INTERNATIONAL SYMPOSIUM ON TEST AUTOMATION & INSTRUMENTATION, VOLS 1 AND 2, 2014, : 511 - 515