Uncertainty quantification of aeroelastic stability of composite plate wings using lamination parameters

被引:51
作者
Scarth, Carl [1 ]
Cooper, Jonathan E. [1 ]
Weaver, Paul M. [1 ]
Silva, Gustavo H. C. [2 ]
机构
[1] Univ Bristol, Dept Aerosp Engn, Bristol BS8 1TR, Avon, England
[2] Embraer SA, BR-12227901 Sao Paulo, Brazil
基金
英国工程与自然科学研究理事会;
关键词
Aeroelastic tailoring; Composite wing; Lamination parameters; Uncertainty quantification; Polynomial Chaos Expansion; POLYNOMIAL CHAOS EXPANSION; DIFFERENTIAL-EQUATIONS; OPTIMUM DESIGN; FREE-VIBRATION; OPTIMIZATION; FLUTTER; VARIABILITY; RELIABILITY; BEHAVIOR;
D O I
10.1016/j.compstruct.2014.05.007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
An approach is presented for modelling the aeroelastic stability of composite laminate wings with ply orientations subject to uncertainty. An aeroelastic model is constructed using the Rayleigh-Ritz technique coupled with modified strip theory aerodynamics. Lamination parameters are used as inputs to a Polynomial Chaos Expansion (PCE), enabling efficient propagation of the uncertainty through the aeroelastic model for a composite laminate with any number of plies. The Rosenblatt transformation is used to adapt the lamination parameter distributions for use with the PCE. A modified approach for modelling the uncertain aeroelastic response near the boundaries of different regimes of behaviour is also presented. Two case studies demonstrate application of the techniques; the first applies a simple PCE to a number of example balanced and symmetric laminates, the second applies the modified approach in a parametric investigation of the effects of bend-twist coupling on response mechanism. The proposed techniques offer at least an order of magnitude reduction in computation time compared to baseline Monte Carlo Simulation for all of the cases investigated. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:84 / 93
页数:10
相关论文
共 36 条
[1]   A stochastic collocation method for elliptic partial differential equations with random input data [J].
Babuska, Ivo ;
Nobile, Fabio ;
Tempone, Raul .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) :1005-1034
[2]   Uncertainty quantification of limit-cycle oscillations [J].
Beran, Philip S. ;
Pettit, Chris L. ;
Millman, Daniel R. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 217 (01) :217-247
[3]   Effect of stiffness uncertainties on the flutter of a cantilever wing [J].
Castravete, S. C. ;
Ibrahim, R. A. .
AIAA JOURNAL, 2008, 46 (04) :925-935
[4]   Polynomial chaos expansion with Latin hypercube sampling for estimating response variability [J].
Choi, SK ;
Grandhi, RV ;
Canfield, RA ;
Pettit, CL .
AIAA JOURNAL, 2004, 42 (06) :1191-1198
[5]   Aeroelastic tailoring of composite structures [J].
Eastep, FE ;
Tischler, VA ;
Venkayya, VB ;
Khot, NS .
JOURNAL OF AIRCRAFT, 1999, 36 (06) :1041-1047
[6]   STIFFNESS OPTIMIZATION OF ORTHOTROPIC LAMINATED COMPOSITES USING LAMINATION PARAMETERS [J].
FUKUNAGA, H ;
VANDERPLAATS, GN .
AIAA JOURNAL, 1991, 29 (04) :641-646
[7]   OPTIMAL-DESIGN OF SYMMETRICAL LAMINATED PLATES FOR FUNDAMENTAL-FREQUENCY [J].
FUKUNAGA, H ;
SEKINE, H ;
SATO, M .
JOURNAL OF SOUND AND VIBRATION, 1994, 171 (02) :219-229
[8]   Modeling composite wing aeroelastic behavior with uncertain damage severity and material properties [J].
Georgiou, G. ;
Manan, A. ;
Cooper, J. E. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2012, 32 :32-43
[9]  
Ghanem R., 1991, STOCHASTIC FINITE EL, VVolume 1, P1, DOI [10.1007/978-1-4612-3094-6, DOI 10.1007/978-1-4612-3094-6]
[10]   Uncertainty analysis near bifurcation of an aeroelastic system [J].
Ghommem, M. ;
Hajj, M. R. ;
Nayfeh, A. H. .
JOURNAL OF SOUND AND VIBRATION, 2010, 329 (16) :3335-3347