Crystalline SnO2 @ amorphous TiO2 core-shell nanostructures for high-performance lithium ion batteries

被引:48
作者
Chen, Hongwen [1 ]
Lu, Yangdan [1 ]
Zhu, Hangjian [1 ]
Guo, Yichuan [1 ]
Hu, Rui [1 ]
Khatoon, Rabia [1 ]
Chen, Lingxiang [2 ]
Zeng, Yu-Jia [3 ]
Jiao, Lei [4 ]
Leng, Jianxing [4 ]
Lu, Jianguo [1 ,5 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Coll Biomed Engn & Instrument Sci, Minist Educ, Key Lab Biomed Engn, Hangzhou 310027, Zhejiang, Peoples R China
[3] Shenzhen Univ, Coll Optoelect Engn, Shenzhen Key Lab Laser Engn, Shenzhen 518060, Peoples R China
[4] Zhejiang Univ, Ocean Coll, Zhoushan 316021, Peoples R China
[5] Zhejiang Univ, Ningbo Res Inst, Ningbo 315100, Zhejiang, Peoples R China
关键词
Lithium ion battery; Tin oxide; Titanium dioxide; Core-shell nanostructure; Amorphous structure; Specific capacity; Cycle stability; ANODE MATERIALS; COMPOSITE; HYBRID; NANOPARTICLES; MICROSPHERES; NANOFIBERS; NANOTUBES; ELECTRODE; ARRAYS;
D O I
10.1016/j.electacta.2019.04.134
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Tin oxide (SnO2) is an attractive anode in lithium ion batteries (LIBs), but its applications have been significantly hampered by the huge volume change during the electrochemical cycling. In this work we demonstrate a rational design of crystalline SnO2@amorphous TiO2 core-shell nanostructures, where the crystalline SnO2 core was synthesized by a hydrothermal method and the amorphous TiO2 shell was deposited by atomic layer deposition. The SnO2@TiO2 nanostructures deliver excellent performances during the electrochemical process, having a high reversible capacity of 1259 mAh g(-1) at cycling rate of 80 mA g(-1), which is still up to 703 mAh g(-1) after 50 cycles. The acceptable rate capacity is also revealed with 412 mAh g(-1) at 400mA g(-1). The coulombic efficiency is stable at around 100% regardless of cycling rates and numbers. The electrochemical performances of the SnO2@TiO2 batteries are better than those of the SnO2 ones without TiO2 coating. In the SnO2@TiO2 nanostructures, the amorphous TiO2 shell layer can experience an isotropic stress, having the ability to evidently reduce the volume change, lattice stress and so the risk of fracture during the cycling process, which is responsible for their outstanding behaviors. The strategy provided in our study is expected to be a precious guideline for designing an ideal electrode for energy storage devices. (c) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:203 / 212
页数:10
相关论文
共 50 条
[1]   Nanostructured Nb2O5 cathode for high-performance lithium-ion battery with Super-P and graphene compound conductive agents [J].
Chen, Hongwen ;
Zhang, Haixin ;
Wu, Yuhao ;
Zhang, Tian ;
Guo, Yichuan ;
Zhang, Qinghua ;
Zeng, Yujia ;
Lu, Jianguo .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 827 :112-119
[2]   TiO2 and SnO2@TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties [J].
Chen, Jun Song ;
Luan, Deyan ;
Li, Chang Ming ;
Boey, Freddy Yin Chiang ;
Qiao, Shizhang ;
Lou, Xiong Wen .
CHEMICAL COMMUNICATIONS, 2010, 46 (43) :8252-8254
[3]   Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes [J].
Chen, Ke ;
Pathak, Rajesh ;
Gurung, Ashim ;
Adhamash, Ezaldeen A. ;
Bahrami, Behzad ;
He, Qingquan ;
Qiao, Hui ;
Smirnova, Alevtina L. ;
Wu, James J. ;
Qiao, Qiquan ;
Zhou, Yue .
ENERGY STORAGE MATERIALS, 2019, 18 :389-396
[4]   Formation of SnO2 Hollow Nanospheres inside Mesoporous Silica Nanoreactors [J].
Ding, Shujiang ;
Chen, Jun Song ;
Qi, Genggeng ;
Duan, Xiaonan ;
Wang, Zhiyu ;
Giannelis, Emmanuel P. ;
Archer, Lynden A. ;
Lou, Xiong Wen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (01) :21-23
[5]   SnO2 nanocrystals on self-organized TiO2 nanotube array as three-dimensional electrode for lithium ion microbatteries [J].
Du, Guodong ;
Guo, Zaiping ;
Zhang, Peng ;
Li, Ying ;
Chen, Mingbo ;
Wexler, David ;
Liu, Huakun .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (27) :5689-5694
[6]   Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion [J].
Guan, Bu Yuan ;
Yu, Xin Yao ;
Wu, Hao Bin ;
Lou, Xiong Wen .
ADVANCED MATERIALS, 2017, 29 (47)
[7]   A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage [J].
Guo, Bingkun ;
Yu, Xiqian ;
Sun, Xiao-Guang ;
Chi, Miaofang ;
Qiao, Zhen-An ;
Liu, Jue ;
Hu, Yong-Sheng ;
Yang, Xiao-Qing ;
Goodenough, John B. ;
Dai, Sheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (07) :2220-2226
[8]   Solar Charging Batteries: Advances, Challenges, and Opportunities [J].
Gurung, Ashim ;
Qiao, Qiquan .
JOULE, 2018, 2 (07) :1217-1230
[9]   Highly Efficient Perovskite Solar Cell Photocharging of Lithium Ion Battery Using DC-DC Booster [J].
Gurung, Ashim ;
Chen, Ke ;
Khan, Reza ;
Abdulkarim, Salem Saad ;
Varnekar, Geetha ;
Pathak, Rajesh ;
Naderi, Roya ;
Qiao, Qiquan .
ADVANCED ENERGY MATERIALS, 2017, 7 (11)
[10]   Tin Selenide - Multi-Walled Carbon Nanotubes Hybrid Anodes for High Performance Lithium-Ion Batteries [J].
Gurung, Ashim ;
Naderi, Roya ;
Vaagensmith, Bjorn ;
Varnekar, Geetha ;
Zhou, Zhengping ;
Elbohy, Hytham ;
Qiao, Qiquan .
ELECTROCHIMICA ACTA, 2016, 211 :720-725