Bayesian comparison of Markov models of molecular dynamics with detailed balance constraint

被引:48
作者
Bacallado, Sergio [1 ]
Chodera, John D. [2 ]
Pande, Vijay [1 ,3 ]
机构
[1] Stanford Univ, Dept Biol Struct, Stanford, CA 94305 USA
[2] Univ Calif Berkeley, Calif Inst Quantitat Biosci QB3, Berkeley, CA 94720 USA
[3] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
关键词
Bayes methods; eigenvalues and eigenfunctions; Markov processes; molecular biophysics; molecular dynamics method; Monte Carlo methods; CONFORMATIONAL DYNAMICS; FOLDING DYNAMICS; MASTER EQUATION; SIMULATIONS; KINETICS; CHAINS; SYSTEMS; MOTION;
D O I
10.1063/1.3192309
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Discrete-space Markov models are a convenient way of describing the kinetics of biomolecules. The most common strategies used to validate these models employ statistics from simulation data, such as the eigenvalue spectrum of the inferred rate matrix, which are often associated with large uncertainties. Here, we propose a Bayesian approach, which makes it possible to differentiate between models at a fixed lag time making use of short trajectories. The hierarchical definition of the models allows one to compare instances with any number of states. We apply a conjugate prior for reversible Markov chains, which was recently introduced in the statistics literature. The method is tested in two different systems, a Monte Carlo dynamics simulation of a two-dimensional model system and molecular dynamics simulations of the terminally blocked alanine dipeptide.
引用
收藏
页数:10
相关论文
共 50 条
[31]   On detailed balance in nonadiabatic dynamics: From spin spheres to equilibrium ellipsoids [J].
Amati, Graziano ;
Runeson, Johan E. ;
Richardson, Jeremy O. .
JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (06)
[32]   Quantum detailed balance conditions and fluctuation relations for thermalizing quantum dynamics [J].
Ramezani, M. ;
Benatti, F. ;
Floreanini, R. ;
Marcantoni, S. ;
Golshani, M. ;
Rezakhani, A. T. .
PHYSICAL REVIEW E, 2018, 98 (05)
[33]   Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics [J].
Prinz, Jan-Hendrik ;
Chodera, John D. ;
Pande, Vijay S. ;
Swope, William C. ;
Smith, Jeremy C. ;
Noe, Frank .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (24)
[34]   Markov models of molecular kinetics: Generation and validation [J].
Prinz, Jan-Hendrik ;
Wu, Hao ;
Sarich, Marco ;
Keller, Bettina ;
Senne, Martin ;
Held, Martin ;
Chodera, John D. ;
Schuette, Christof ;
Noe, Frank .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (17)
[35]   Minimum entropy production, detailed balance and Wasserstein distance for continuous-time Markov processes [J].
Dechant, Andreas .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (09)
[36]   In-Home Activity Recognition: Bayesian Inference for Hidden Markov Models [J].
Javier Ordonez, Francisco ;
Englebienne, Gwenn ;
de Toledo, Paula ;
van Kasteren, Tim ;
Sanchis, Araceli ;
Krose, Ben .
IEEE PERVASIVE COMPUTING, 2014, 13 (03) :67-75
[37]   Ligand Binding Rate Constants in Heme Proteins Using Markov State Models and Molecular Dynamics Simulations [J].
Bringas, Mauro ;
Lombardi, Leandro E. ;
Luque, F. Javier ;
Estrin, Dario A. ;
Capece, Luciana .
CHEMPHYSCHEM, 2019, 20 (19) :2451-2460
[38]   Bayesian Learning of Degenerate Linear Gaussian State Space Models Using Markov Chain Monte Carlo [J].
Bunch, Pete ;
Murphy, James ;
Godsill, Simon .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (16) :4100-4112
[39]   Mathematical understanding of detailed balance condition violation and its application to Langevin dynamics [J].
Ohzeki, Masayuki .
STATPHYS-KOLKATA VIII, 2015, 638
[40]   Theoretical restrictions on longest implicit time scales in Markov state models of biomolecular dynamics [J].
Sinitskiy, Anton V. ;
Pande, Vijay S. .
JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (04)