Bayes methods;
eigenvalues and eigenfunctions;
Markov processes;
molecular biophysics;
molecular dynamics method;
Monte Carlo methods;
CONFORMATIONAL DYNAMICS;
FOLDING DYNAMICS;
MASTER EQUATION;
SIMULATIONS;
KINETICS;
CHAINS;
SYSTEMS;
MOTION;
D O I:
10.1063/1.3192309
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Discrete-space Markov models are a convenient way of describing the kinetics of biomolecules. The most common strategies used to validate these models employ statistics from simulation data, such as the eigenvalue spectrum of the inferred rate matrix, which are often associated with large uncertainties. Here, we propose a Bayesian approach, which makes it possible to differentiate between models at a fixed lag time making use of short trajectories. The hierarchical definition of the models allows one to compare instances with any number of states. We apply a conjugate prior for reversible Markov chains, which was recently introduced in the statistics literature. The method is tested in two different systems, a Monte Carlo dynamics simulation of a two-dimensional model system and molecular dynamics simulations of the terminally blocked alanine dipeptide.
机构:
NIH, Ctr Informat Technol, Div Computat Biosci, Math & Stat Comp Lab, Bethesda, MD 20892 USANIH, Ctr Informat Technol, Div Computat Biosci, Math & Stat Comp Lab, Bethesda, MD 20892 USA
Berezhkovskii, A
;
Szabo, A
论文数: 0引用数: 0
h-index: 0
机构:NIH, Ctr Informat Technol, Div Computat Biosci, Math & Stat Comp Lab, Bethesda, MD 20892 USA
机构:
NIH, Ctr Informat Technol, Div Computat Biosci, Math & Stat Comp Lab, Bethesda, MD 20892 USANIH, Ctr Informat Technol, Div Computat Biosci, Math & Stat Comp Lab, Bethesda, MD 20892 USA
Berezhkovskii, A
;
Szabo, A
论文数: 0引用数: 0
h-index: 0
机构:NIH, Ctr Informat Technol, Div Computat Biosci, Math & Stat Comp Lab, Bethesda, MD 20892 USA