Fault Diagnosis of Rolling Bearing Based on WP Reconstructed Energy Entropy and PSO-LSSVM

被引:0
|
作者
Yan, Hongmei [1 ]
Mu, Huina [1 ]
Yi, Xiaojian [1 ,2 ]
Yang, Yuanyuan [3 ]
Chen, Guangliang [3 ]
机构
[1] Beijing Inst Technol, Sch Mechatron Engn, Beijing, Peoples R China
[2] China North Vehicle Res Inst, China North Inst Grp, Beijing, Peoples R China
[3] Beijing Inst Technol, Beijing, Peoples R China
来源
2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-PARIS) | 2019年
关键词
rolling bearing; fault diagnosis; wavelet packet decomposition; least squares support vector machine; particle swarm optimization;
D O I
10.1109/PHM-Paris.2019.00011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A fault diagnosis method based on wavelet packet (WP) reconstruction of energy entropy, particle swarm optimization (PSO) and least squares support vector machine (LSSVM) is proposed for non-stationary vibration signals of rolling bearings. Firstly, the vibration signal is preprocessed, followed by 3-layer wavelet packet decomposition, and the energy entropy percentage of the reconstruction coefficient is extracted as the feature vector. Then, the 8-dimensional fault feature vector is reduced to a 2-dimensional feature vector by principal component analysis (PCA). Finally, the 2-dimensional feature vector is taken as the input sample of PSO-LSSVM. In order to diagnose the three fault states of the inner ring, the ball and the outer ring of the rolling bearing, four LSSVM classifiers are established. After the simulation analysis of the bearing vibration data, the diagnostic accuracy rate of the LSSVM multi-classifier group was 100%, which proves the feasibility and effectivity of the method.
引用
收藏
页码:18 / 23
页数:6
相关论文
共 50 条
  • [21] Rolling Bearing Fault Diagnosis Method Based on EEMD Singular Value Entropy
    Zhang C.
    Zhao R.
    Deng L.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2019, 39 (02): : 353 - 358
  • [22] Rolling Bearing Fault Diagnosis Based on Variational Mode Decomposition and Permutation Entropy
    Tang, Guiji
    Wang, Xiaolong
    He, Yuling
    Liu, Shangkun
    2016 13TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2016, : 626 - 631
  • [23] Rolling bearing fault diagnosis method based on improved Alexnet and PSO-BFA
    Zhao X.
    Zhang Q.
    Chen P.
    Zhu Q.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (07): : 21 - 28
  • [24] Rolling Bearing Fault Diagnosis Based on VMD-MPE and PSO-SVM
    Ye, Maoyou
    Yan, Xiaoan
    Jia, Minping
    ENTROPY, 2021, 23 (06)
  • [25] Fine-to-Coarse Multiscale Permutation Entropy for Rolling Bearing Fault Diagnosis
    Huo, Zhiqiang
    Zhang, Yu
    Shu, Lei
    2018 14TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2018, : 660 - 665
  • [26] Study of Fault Diagnosis Method for Three-Phase High Power Factor Rectifier Based on PSO-LSSVM Algorithm
    Zhang, Shutuan
    Zhang, Kai
    Jiang, Jing
    2009 INTERNATIONAL CONFERENCE ON APPLIED SUPERCONDUCTIVITY AND ELECTROMAGNETIC DEVICES, 2009, : 221 - 224
  • [27] Motor rolling bearing fault diagnosis based on MVMD energy entropy and GWO-SVM
    Tang, Jian
    Zhao, Qiaoni
    JOURNAL OF VIBROENGINEERING, 2023, 25 (06) : 1096 - 1107
  • [28] Rolling element bearing fault diagnosis based on time-wavelet energy spectrum entropy
    Tang, Gui-Ji
    Deng, Fei-Yue
    He, Yu-Ling
    Wang, Xiao-Long
    Zhendong yu Chongji/Journal of Vibration and Shock, 2014, 33 (07): : 68 - 72+91
  • [29] Intelligent fault diagnosis method for rolling bearing using WMNRS and LSSVM
    Bai, Xuezong
    Zeng, Shilong
    Ma, Qiang
    Feng, Zihao
    An, Zongwen
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (07)
  • [30] Rolling bearing fault diagnosis based on HVD algorithm and sample entropy
    Li, Yuefeng
    Zhou, Xingliang
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2019, 19 (S1) : S331 - S340