Front passivation of Cu(In,Ga)Se2 solar cells using Al2O3: Culprits and benefits

被引:31
作者
Curado, M. A. [1 ,2 ]
Teixeira, J. P. [1 ]
Monteiro, M. [1 ,3 ]
Ribeiro, E. F. M. [2 ]
Vilao, R. C. [2 ]
Alberto, H. V. [2 ]
Cunha, J. M. V. [1 ,4 ,5 ]
Lopes, T. S. [1 ,6 ,7 ,8 ]
Oliveira, K. [1 ]
Donzel-Gargand, O. [1 ,9 ]
Hultqvist, A. [9 ]
Calderon, S. [1 ]
Barreiros, M. A. [10 ]
Chiappim, W. [4 ,5 ]
Leitao, J. P. [4 ,5 ]
Silva, A. G. [3 ]
Prokscha, T. [11 ]
Vinhais, C. [1 ,12 ]
Fernandes, P. A. [1 ,5 ,12 ]
Salome, P. M. P. [1 ,4 ]
机构
[1] INL, Int Iberian Nanotechnol Lab, P-4715330 Braga, Portugal
[2] Univ Coimbra, CFisUC, Dept Phys, P-3004516 Coimbra, Portugal
[3] Univ Nova Lisboa, Dept Fis, Fac Ciencias & Tecnol, Campus Caparica, P-2829516 Caparica, Portugal
[4] Univ Aveiro, Dept Fis, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[5] Univ Aveiro, i3N, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[6] Hasselt Univ, Inst Mat Res IMO, B-3590 Diepenbeek, Belgium
[7] IMOMEC, Imec Div, Wetenschapspk 1, B-3590 Diepenbeek, Belgium
[8] EnergyVille 2,Thor Pk 8320, B-3600 Genk, Belgium
[9] Uppsala Univ, Dept Mat Sci & Engn, Solar Cell Technol, Box 534, SE-75121 Uppsala, Sweden
[10] Lab Nacl Energia & Geol, Estr Paco Lumiar 22, Lisbon, Portugal
[11] Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland
[12] Inst Politecn Porto, CIETI, Dept Fis, Inst Super Engn Porto, P-4200072 Porto, Portugal
基金
欧盟地平线“2020”;
关键词
Surface passivation; Al2O3; Cu(In; Ga)Se-2; (CIGS); Thin film solar cells; Atomic layer deposition (ALD); REAR SURFACE PASSIVATION; ATOMIC-LAYER-DEPOSITION; THIN-FILMS; POSTDEPOSITION TREATMENT; INTERFACE PASSIVATION; LOW-TEMPERATURE; BUFFER LAYERS; POINT-CONTACT; CDS BUFFER; EFFICIENCY;
D O I
10.1016/j.apmt.2020.100867
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the past years, the strategies used to break the Cu(In,Ga)Se-2 (CIGS) light to power conversion efficiency world record value were based on improvements of the absorber optoelectronic and crystalline properties, mainly using complex post-deposition treatments. To reach even higher efficiency values, further advances in the solar cell architecture are needed, in particular, with respect to the CIGS interfaces. In this study, we evaluate the structural, morphological and optoelectronic impact of an Al2O3 layer as a potential front passivation layer on the CIGS properties, as well as an Al2O3 tunneling layer between CIGS and CdS. Morphological and structural analyses reveal that the use of Al2O3 alone is not detrimental to CIGS, although it does not resist to the CdS chemical bath deposition. The CIGS optoelectronic properties degrade when the CdS is deposited on top of Al2O3. Nonetheless, when Al2O3 is used alone, the optoelectronic measurements reveal a positive impact of this inclusion such as a very low concentration of interface defects while keeping the same CIGS recombination channels. Thus, we suggest that an Al2O3 front passivation layer can be successfully used with alternative buffer layers. Depth-resolved microscopic analysis of the CIGS interface with slow-muons strongly suggests for the first time that low-energy muon spin spectroscopy (LE-mu SR) is sensitive to both charge carrier separation and bulk recombination in complex semiconductors. The demonstration that Al2O3 has the potential to be used as a front passivation layer is of significant importance, considering that Al2O3 has been widely studied as rear interface passivation material. (C) 2020 Published by Elsevier Ltd.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] 13.6%-efficient Cu(In,Ga)Se2 solar cell with absorber fabricated by RF sputtering of (In,Ga)2Se3 and Cu Se targets
    Zhu, X. L.
    Wang, Y. M.
    Zhou, Z.
    Li, A. M.
    Zhang, L.
    Huang, F. Q.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 113 : 140 - 143
  • [42] Nonradiative Recombination Dominates Voltage Losses in Cu(In,Ga)Se2 Solar Cells Fabricated using Different Methods
    Bothwell, Alexandra M.
    Wands, Jake
    Miller, Michael F.
    Kanevce, Ana
    Paetel, Stefan
    Tsoulka, Polyxeni
    Lepetit, Thomas
    Barreau, Nicolas
    Valdes, Nicholas
    Shafarman, William
    Rockett, Angus
    Arehart, Aaron R.
    Kuciauskas, Darius
    SOLAR RRL, 2023, 7 (11)
  • [43] Revealing the origin of the beneficial effect of cesium in highly efficient Cu(In,Ga)Se2 solar cells
    Schoeppe, Philipp
    Schoenherr, Sven
    Chugh, Manjusha
    Mirhosseini, Hossein
    Jackson, Philip
    Wuerz, Roland
    Ritzer, Maurizio
    Johannes, Andreas
    Martinez-Criado, Gema
    Wisniewski, Wolfgang
    Schwarz, Torsten
    Plass, Christian T.
    Hafermann, Martin
    Kuehne, Thomas D.
    Schnohr, Claudia S.
    Ronning, Carsten
    NANO ENERGY, 2020, 71
  • [44] Refractive indices of layers and optical simulations of Cu(In,Ga)Se2 solar cells
    Carron, Romain
    Avancini, Enrico
    Feurer, Thomas
    Bissig, Benjamin
    Losio, Paolo A.
    Figi, Renato
    Schreiner, Claudia
    Burki, Melanie
    Bourgeois, Emilie
    Remes, Zdenek
    Nesladek, Milos
    Buecheler, Stephan
    Tiwari, Ayodhya N.
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2018, 19 (01) : 396 - 410
  • [45] Effect of the Impurity Incorporation on the Performance of Cu(In,Ga)Se2 Semiconductor Solar Cells
    Kim, Minjung
    Lee, Jihye
    Kim, Haidong
    Lee, Kang-Bong
    Lee, Yeonhee
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (10) : 10748 - 10752
  • [46] Phototransistor effects in Cu(In,Ga)Se2 solar cells
    Ott, Thomas
    Walter, Thomas
    Unold, Thomas
    THIN SOLID FILMS, 2013, 535 : 275 - 278
  • [47] Ultrathin Cu(In,Ga)Se2 based solar cells
    Naghavi, N.
    Mollica, F.
    Goffard, J.
    Posada, J.
    Duchatelet, A.
    Jubault, M.
    Donsanti, F.
    Cattoni, A.
    Collin, S.
    Grand, P. P.
    Greffet, J. J.
    Lincot, D.
    THIN SOLID FILMS, 2017, 633 : 55 - 60
  • [48] Impact of front contact layers on performance of Cu(In,Ga)Se2 solar cells in relaxed and metastable states
    Koida, Takashi
    Nishinaga, Jiro
    Ueno, Yuko
    Higuchi, Hirohumi
    Takahashi, Hideki
    Iioka, Masayuki
    Shibata, Hajime
    Niki, Shigeru
    PROGRESS IN PHOTOVOLTAICS, 2018, 26 (10): : 789 - 799
  • [49] Effect of Cu-In-Ga Target Composition on Hybrid-Sputtered Cu(In,Ga)Se2 Solar Cells
    Santos, Pedro
    Brito, Daniel
    Anacleto, Pedro
    Fonseca, Jose
    de Brito Sousa, Diana
    Tavares, Carlos J.
    Virtuoso, Jose
    Alves, Marina
    Perez-Rodriguez, Ana
    Sadewasser, Sascha
    IEEE JOURNAL OF PHOTOVOLTAICS, 2021, 11 (05): : 1206 - 1212
  • [50] Atomic layer deposition of In2O3 transparent conductive oxide layers for application in Cu(In,Ga)Se2 solar cells with different buffer layers
    Keller, Jan
    Stolt, Lars
    Edoff, Marika
    Torndahl, Tobias
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (06): : 1541 - 1552