Front passivation of Cu(In,Ga)Se2 solar cells using Al2O3: Culprits and benefits

被引:31
作者
Curado, M. A. [1 ,2 ]
Teixeira, J. P. [1 ]
Monteiro, M. [1 ,3 ]
Ribeiro, E. F. M. [2 ]
Vilao, R. C. [2 ]
Alberto, H. V. [2 ]
Cunha, J. M. V. [1 ,4 ,5 ]
Lopes, T. S. [1 ,6 ,7 ,8 ]
Oliveira, K. [1 ]
Donzel-Gargand, O. [1 ,9 ]
Hultqvist, A. [9 ]
Calderon, S. [1 ]
Barreiros, M. A. [10 ]
Chiappim, W. [4 ,5 ]
Leitao, J. P. [4 ,5 ]
Silva, A. G. [3 ]
Prokscha, T. [11 ]
Vinhais, C. [1 ,12 ]
Fernandes, P. A. [1 ,5 ,12 ]
Salome, P. M. P. [1 ,4 ]
机构
[1] INL, Int Iberian Nanotechnol Lab, P-4715330 Braga, Portugal
[2] Univ Coimbra, CFisUC, Dept Phys, P-3004516 Coimbra, Portugal
[3] Univ Nova Lisboa, Dept Fis, Fac Ciencias & Tecnol, Campus Caparica, P-2829516 Caparica, Portugal
[4] Univ Aveiro, Dept Fis, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[5] Univ Aveiro, i3N, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[6] Hasselt Univ, Inst Mat Res IMO, B-3590 Diepenbeek, Belgium
[7] IMOMEC, Imec Div, Wetenschapspk 1, B-3590 Diepenbeek, Belgium
[8] EnergyVille 2,Thor Pk 8320, B-3600 Genk, Belgium
[9] Uppsala Univ, Dept Mat Sci & Engn, Solar Cell Technol, Box 534, SE-75121 Uppsala, Sweden
[10] Lab Nacl Energia & Geol, Estr Paco Lumiar 22, Lisbon, Portugal
[11] Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland
[12] Inst Politecn Porto, CIETI, Dept Fis, Inst Super Engn Porto, P-4200072 Porto, Portugal
基金
欧盟地平线“2020”;
关键词
Surface passivation; Al2O3; Cu(In; Ga)Se-2; (CIGS); Thin film solar cells; Atomic layer deposition (ALD); REAR SURFACE PASSIVATION; ATOMIC-LAYER-DEPOSITION; THIN-FILMS; POSTDEPOSITION TREATMENT; INTERFACE PASSIVATION; LOW-TEMPERATURE; BUFFER LAYERS; POINT-CONTACT; CDS BUFFER; EFFICIENCY;
D O I
10.1016/j.apmt.2020.100867
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the past years, the strategies used to break the Cu(In,Ga)Se-2 (CIGS) light to power conversion efficiency world record value were based on improvements of the absorber optoelectronic and crystalline properties, mainly using complex post-deposition treatments. To reach even higher efficiency values, further advances in the solar cell architecture are needed, in particular, with respect to the CIGS interfaces. In this study, we evaluate the structural, morphological and optoelectronic impact of an Al2O3 layer as a potential front passivation layer on the CIGS properties, as well as an Al2O3 tunneling layer between CIGS and CdS. Morphological and structural analyses reveal that the use of Al2O3 alone is not detrimental to CIGS, although it does not resist to the CdS chemical bath deposition. The CIGS optoelectronic properties degrade when the CdS is deposited on top of Al2O3. Nonetheless, when Al2O3 is used alone, the optoelectronic measurements reveal a positive impact of this inclusion such as a very low concentration of interface defects while keeping the same CIGS recombination channels. Thus, we suggest that an Al2O3 front passivation layer can be successfully used with alternative buffer layers. Depth-resolved microscopic analysis of the CIGS interface with slow-muons strongly suggests for the first time that low-energy muon spin spectroscopy (LE-mu SR) is sensitive to both charge carrier separation and bulk recombination in complex semiconductors. The demonstration that Al2O3 has the potential to be used as a front passivation layer is of significant importance, considering that Al2O3 has been widely studied as rear interface passivation material. (C) 2020 Published by Elsevier Ltd.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] High Voc in (Cu,Ag)(In,Ga)Se2 Solar Cells
    Edoff, Marika
    Jarmar, Tobias
    Nilsson, Nina Shariati
    Wallin, Erik
    Hogstrom, Daniel
    Stolt, Olof
    Lundberg, Olle
    Shafarman, William
    Stolt, Lars
    IEEE JOURNAL OF PHOTOVOLTAICS, 2017, 7 (06): : 1789 - 1794
  • [32] Preparation and Properties of Passivation Film Layers Spray Coated Flexible Cu(In,Ga)Se2 Solar Cells
    Lee, Sang Hee
    Park, Byung Min
    Kim, Hyun Sik
    Chang, Ho Jung
    2017 INTERNATIONAL CONFERENCE ON ELECTRONICS PACKAGING (ICEP), 2017, : 26 - 27
  • [33] Verification of phototransistor model for Cu(In,Ga)Se2 solar cells
    Ott, Thomas
    Schoenberger, Francillina
    Walter, Thomas
    Hariskos, Dimitrios
    Kiowski, Oliver
    Salomon, Oliver
    Schaeffler, Raymund
    THIN SOLID FILMS, 2015, 582 : 392 - 396
  • [34] Insulator Materials for Interface Passivation of Cu(In,Ga)Se2 Thin Films
    Cunha, J. M. V.
    Fernandes, P. A.
    Hultqvist, A.
    Teixeira, J. P.
    Bose, S.
    Vermang, B.
    Garud, S.
    Buldu, D.
    Gaspar, J.
    Edoff, M.
    Leitao, J. P.
    Salome, P. M. P.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2018, 8 (05): : 1313 - 1319
  • [35] Improvement of Cu(In,Ga)Se2 thin film solar cells by surface sulfurization using ditertiarybutylsulfide
    Liu, Xiaohui
    Liu, Zhengxin
    Meng, Fanying
    Sugiyama, Mutsumi
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 124 : 227 - 231
  • [36] The competing roles of i-ZnO in Cu(In,Ga)Se2 solar cells
    Williams, Benjamin L.
    Zardetto, Valerio
    Kniknie, Bas
    Verheijen, Marcel A.
    Kessels, Wilhelmus M. M.
    Creatore, Mariadriana
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 157 : 798 - 807
  • [37] Degradation mechanism of Cu(In,Ga)Se2 solar cells induced by exposure to air
    Nishinaga, Jiro
    Kamikawa, Yukiko
    Koida, Takashi
    Shibata, Hajime
    Niki, Shigeru
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (07)
  • [38] Review on incorporation of alkali elements and their effects in Cu(In,Ga)Se2 solar cells
    Wang, Yazi
    Lv, Shasha
    Li, Zhengcao
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 96 : 179 - 189
  • [39] ALD-ZnxTiyO as Window Layer in Cu(In,Ga)Se2 Solar Cells
    Lockinger, Johannes
    Nishiwaki, Shiro
    Andres, Christian
    Erni, Rolf
    Rossell, Marta D.
    Romanyuk, Yaroslav E.
    Buecheler, Stephan
    Tiwari, Ayodhya N.
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (50) : 43603 - 43609
  • [40] Surface engineering in Cu(In,Ga)Se2 solar cells
    Schleussner, Sebastian Michael
    Pettersson, Jonas
    Torndahl, Tobias
    Edoff, Marika
    PROGRESS IN PHOTOVOLTAICS, 2013, 21 (04): : 561 - 568