Generalized Matrix Factorization: efficient algorithms for fitting generalized linear latent variable models to large data arrays

被引:0
|
作者
Kidzinski, Lukasz [1 ]
Hui, Francis K. C. [2 ]
Warton, David I. [3 ,4 ]
Hastie, Trevor J. [5 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Australian Natl Univ, Res Sch Finance Actuarial Studies & Stat, Canberra, ACT 2601, Australia
[3] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[4] Univ New South Wales, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia
[5] Stanford Univ, Dept Stat & Biomed Data Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会; 澳大利亚研究理事会; 美国国家卫生研究院;
关键词
Generalized Linear Models; Generalized Linear Mixed-effect Models; Nuclear Norm; Penalized Quasi-Likelihood; PENALIZED LIKELIHOOD; REGULARIZATION; INFORMATION; REGRESSION; INFERENCE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmeasured or latent variables are often the cause of correlations between multivariate measurements, which are studied in a variety of fields such as psychology, ecology, and medicine. For Gaussian measurements, there are classical tools such as factor analy-sis or principal component analysis with a well-established theory and fast algorithms. Generalized Linear Latent Variable models (GLLVMs) generalize such factor models to non-Gaussian responses. However, current algorithms for estimating model parameters in GLLVMs require intensive computation and do not scale to large data sets with thousands of observational units or responses. In this article, we propose a new approach for fitting GLLVMs to high-dimensional data sets, based on approximating the model using penalized quasi-likelihood and then using a Newton method and Fisher scoring to learn the model parameters. Computationally, our method is noticeably faster and more stable, enabling GLLVM fits to much larger matrices than previously possible. We apply our method on a data set of 48,000 observational units with over 2,000 observed species in each unit and find that most of the variability can be explained with a handful of factors. We publish an easy-to-use implementation of our proposed fitting algorithms.
引用
收藏
页数:29
相关论文
共 50 条
  • [11] An efficient and robust variable selection method for longitudinal generalized linear models
    Lv, Jing
    Yang, Hu
    Guo, Chaohui
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 82 : 74 - 88
  • [12] Subsampling based variable selection for generalized linear models
    Capanu, Marinela
    Giurcanu, Mihai
    Begg, Colin B.
    Gonen, Mithat
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 184
  • [13] On fitting generalized linear and non-linear models of mortality
    Currie, Iain D.
    SCANDINAVIAN ACTUARIAL JOURNAL, 2016, (04) : 356 - 383
  • [14] Large-Scale Generalized Linear Models for Longitudinal Data with Grouped Patterns of Unobserved Heterogeneity
    Ando, Tomohiro
    Bai, Jushan
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2023, 41 (03) : 983 - 994
  • [15] Versatile Descent Algorithms for Group Regularization and Variable Selection in Generalized Linear Models
    Helwig, Nathaniel E.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2025, 34 (01) : 239 - 252
  • [16] Bayesian Regularized Multivariate Generalized Latent Variable Models
    Feng, Xiang-Nan
    Wu, Hao-Tian
    Song, Xin-Yuan
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2017, 24 (03) : 341 - 358
  • [17] Marginal likelihood estimation from the Metropolis output: tips and tricks for efficient implementation in generalized linear latent variable models
    Vitoratou, Silia
    Ntzoufras, Ioannis
    Moustaki, Irini
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (10) : 2091 - 2105
  • [18] Robust and efficient estimation of nonparametric generalized linear models
    Kalogridis, Ioannis
    Claeskens, Gerda
    Van Aelst, Stefan
    TEST, 2023, 32 (03) : 1055 - 1078
  • [19] Generalized Linear Models for Aggregated Data
    Bhowmik, Avradeep
    Ghosh, Joydeep
    Koyejo, Oluwasanmi
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 93 - 101
  • [20] Empirical Likelihood in Generalized Linear Models with Working Covariance Matrix
    Zhou, Xiu-qing
    Gao, Qi-bing
    Zhu, Chun-hua
    Du, Xiu-li
    Mao, Liu-liu
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (01): : 87 - 97