EXISTENCE OF POSITIVE RADIAL SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS AND SYSTEMS

被引:0
作者
Zhang, Zhijun [1 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
关键词
Quasilinear elliptic equation; radial solutions; existence; NONRADIAL LARGE SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under simple conditions on f and g, we show that existence of positive radial solutions for the quasilinear elliptic equation div(phi(1)(vertical bar del u vertical bar)del u) = a(vertical bar x vertical bar)f (u) x is an element of R-N and for the system div(phi(1)(vertical bar del u vertical bar)del u) = a(vertical bar x vertical bar)f (v) x is an element of R-N, div(phi(2)(vertical bar del v vertical bar)del v) = b(vertical bar x vertical bar)g(u) x is an element of R-N.
引用
收藏
页数:9
相关论文
共 38 条
  • [1] Alsaedi R, 2015, ELECTRON J QUAL THEO, P1
  • [2] [Anonymous], 1957, PACIFIC J MATH
  • [3] [Anonymous], 2012, ELECT J DIFFERENTIAL
  • [4] [Anonymous], 2008, CONT MATH APPL
  • [5] On the existence of positive solutions for a class of semilinear elliptic equations
    Bachar, I
    Zeddini, N
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (04) : 1239 - 1247
  • [6] Existence and multiplicity results for some Lane-Emden elliptic systems: Subquadratic case
    Barile, Sara
    Salvatore, Addolorata
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2015, 4 (01) : 25 - 35
  • [7] Soliton like solutions of a Lorentz invariant equation in dimension 3
    Benci, V
    Fortunato, D
    Pisani, L
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (03) : 315 - 344
  • [8] Multiple perturbations of a singular eigenvalue problem
    Cencelj, Matija
    Repovs, Dusan
    Virk, Ziga
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 119 : 37 - 45
  • [9] Dong Y, 2005, DISCRETE CONT DYN-A, V12, P413
  • [10] Entire large solutions for semilinear elliptic equations
    Dupaigne, Louis
    Ghergu, Marius
    Goubet, Olivier
    Warnault, Guillaume
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (07) : 2224 - 2251