Multiqubit and multilevel quantum reinforcement learning with quantum technologies

被引:27
|
作者
Cardenas-Lopez, F. A. [1 ,2 ]
Lamata, L. [3 ]
Retamal, J. C. [1 ,2 ]
Solano, E. [3 ,4 ,5 ]
机构
[1] Univ Santiago Chile USACH, Dept Fis, Santiago, Chile
[2] Estn Cent, Ctr Dev Nanosci & Nanotechnol, Santiago, Chile
[3] Univ Basque Country, UPV EHU, Dept Phys Chem, Bilbao, Spain
[4] Basque Fdn Sci, IKERBASQUE, Bilbao, Spain
[5] Shanghai Univ, Dept Phys, Shanghai, Peoples R China
来源
PLOS ONE | 2018年 / 13卷 / 07期
关键词
CIRCUITS; MEMORY; GATES;
D O I
10.1371/journal.pone.0200455
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a protocol to perform quantum reinforcement learning with quantum technologies. At variance with recent results on quantum reinforcement learning with superconducting circuits, in our current protocol coherent feedback during the learning process is not required, enabling its implementation in a wide variety of quantum systems. We consider diverse possible scenarios for an agent, an environment, and a register that connects them, involving multiqubit and multilevel systems, as well as open-system dynamics. We finally propose possible implementations of this protocol in trapped ions and superconducting circuits. The field of quantum reinforcement learning with quantum technologies will enable enhanced quantum control, as well as more efficient machine learning calculations.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Multiqubit entanglement due to quantum gravity
    Liu, Shaomin
    Chen, Lin
    Liang, Mengfan
    PHYSICS LETTERS A, 2024, 493
  • [22] Quantum reinforcement learningComparing quantum annealing and gate-based quantum computing with classical deep reinforcement learning
    Niels M. P. Neumann
    Paolo B. U. L. de Heer
    Frank Phillipson
    Quantum Information Processing, 22
  • [23] Quantum sensing using multiqubit quantum systems and the Pauli polytope
    Avdic, Irma
    Sager-Smith, LeeAnn M.
    Ghosh, Indranil
    Wedig, Olivia C.
    Higgins, Jacob S.
    Engel, Gregory S.
    Mazziotti, David A.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (04):
  • [24] Parametrized Quantum Policies for Reinforcement Learning
    Jerbi, Sofiene
    Gyurik, Casper
    Marshall, Simon C.
    Briegel, Hans J.
    Dunjko, Vedran
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [25] Topological Quantum Compiling with Reinforcement Learning
    Zhang, Yuan-Hang
    Zheng, Pei-Lin
    Zhang, Yi
    Deng, Dong-Ling
    PHYSICAL REVIEW LETTERS, 2020, 125 (17)
  • [26] Quantum compiling by deep reinforcement learning
    Lorenzo Moro
    Matteo G. A. Paris
    Marcello Restelli
    Enrico Prati
    Communications Physics, 4
  • [27] Reinforcement Learning for Digital Quantum Simulation
    Bolens, Adrien
    Heyl, Markus
    PHYSICAL REVIEW LETTERS, 2021, 127 (11)
  • [28] Quantum Reinforcement Learning in Protein Folding
    Muscalagiu, Anca Ioana
    2023 25TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, SYNASC 2023, 2023, : 316 - 323
  • [29] Quantum compiling by deep reinforcement learning
    Moro, Lorenzo
    Paris, Matteo G. A.
    Restelli, Marcello
    Prati, Enrico
    COMMUNICATIONS PHYSICS, 2021, 4 (01)
  • [30] Quantum reinforcement learning: the maze problem
    Nicola Dalla Pozza
    Lorenzo Buffoni
    Stefano Martina
    Filippo Caruso
    Quantum Machine Intelligence, 2022, 4