Multiqubit and multilevel quantum reinforcement learning with quantum technologies

被引:27
|
作者
Cardenas-Lopez, F. A. [1 ,2 ]
Lamata, L. [3 ]
Retamal, J. C. [1 ,2 ]
Solano, E. [3 ,4 ,5 ]
机构
[1] Univ Santiago Chile USACH, Dept Fis, Santiago, Chile
[2] Estn Cent, Ctr Dev Nanosci & Nanotechnol, Santiago, Chile
[3] Univ Basque Country, UPV EHU, Dept Phys Chem, Bilbao, Spain
[4] Basque Fdn Sci, IKERBASQUE, Bilbao, Spain
[5] Shanghai Univ, Dept Phys, Shanghai, Peoples R China
来源
PLOS ONE | 2018年 / 13卷 / 07期
关键词
CIRCUITS; MEMORY; GATES;
D O I
10.1371/journal.pone.0200455
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a protocol to perform quantum reinforcement learning with quantum technologies. At variance with recent results on quantum reinforcement learning with superconducting circuits, in our current protocol coherent feedback during the learning process is not required, enabling its implementation in a wide variety of quantum systems. We consider diverse possible scenarios for an agent, an environment, and a register that connects them, involving multiqubit and multilevel systems, as well as open-system dynamics. We finally propose possible implementations of this protocol in trapped ions and superconducting circuits. The field of quantum reinforcement learning with quantum technologies will enable enhanced quantum control, as well as more efficient machine learning calculations.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Quantum optimal control of multilevel dissipative quantum systems with reinforcement learning
    An, Zheng
    Song, Hai-Jing
    He, Qi-Kai
    Zhou, D. L.
    PHYSICAL REVIEW A, 2021, 103 (01)
  • [2] A tutorial on optimal control and reinforcement learning methods for quantum technologies
    Giannelli, Luigi
    Sgroi, Sofia
    Brown, Jonathon
    Paraoanu, Gheorghe Sorin
    Paternostro, Mauro
    Paladino, Elisabetta
    Falci, Giuseppe
    PHYSICS LETTERS A, 2022, 434
  • [3] A tutorial on optimal control and reinforcement learning methods for quantum technologies
    Giannelli, Luigi
    Sgroi, Sofia
    Brown, Jonathon
    Paraoanu, Gheorghe Sorin
    Paternostro, Mauro
    Paladino, Elisabetta
    Falci, Giuseppe
    Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 434
  • [4] Quantum Reinforcement Learning with Quantum Photonics
    Lamata, Lucas
    PHOTONICS, 2021, 8 (02) : 1 - 8
  • [5] Multiqubit quantum teleportation
    Zhao, Ming-Jing
    Li, Zong-Guo
    Li-Jost, Xianqing
    Fei, Shao-Ming
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (40)
  • [6] Quantum reinforcement learning
    Dong, Daoyi
    Chen, Chunlin
    Li, Hanxiong
    Tarn, Tzyh-Jong
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (05): : 1207 - 1220
  • [7] Quantum reinforcement learning
    Dong, DY
    Chen, CL
    Chen, ZH
    ADVANCES IN NATURAL COMPUTATION, PT 2, PROCEEDINGS, 2005, 3611 : 686 - 689
  • [8] Quantum Reinforcement Learning for Quantum Architecture Search
    Chen, Samuel Yen-Chi
    PROCEEDINGS OF THE 2023 INTERNATIONAL WORKSHOP ON QUANTUM CLASSICAL COOPERATIVE COMPUTING, QCCC 2023, 2023, : 17 - 20
  • [9] Quantum Reinforcement Learning with Quantum World Model
    Zeng, Peigen
    He, Ying
    Yu, F. Richard
    Leung, Victor C. M.
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 3185 - 3190
  • [10] Quantum Machine Learning and Bioinspired Quantum Technologies
    Lamata, Lucas
    Sanz, Mikel
    Solano, Enrique
    ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (7-8)