An Optimized Flow Cytometry Protocol for Analysis of Angiogenic Monocytes and Endothelial Progenitor Cells in Peripheral Blood

被引:36
|
作者
Hristov, Mihail [1 ]
Schmitz, Susanne [1 ]
Schuhmann, Christoph [2 ]
Leyendecker, Thorsten [3 ]
von Hundelshausen, Philipp [1 ,3 ]
Kroetz, Florian [2 ]
Sohn, Hae-Young [2 ]
Nauwelaers, Frans A. [4 ]
Weber, Christian [1 ]
机构
[1] Rhein Westfal TH Aachen, IMCAR, D-52074 Aachen, Germany
[2] Univ Munich, Dept Cardiol, Munich, Germany
[3] Rhein Westfal TH Aachen, Dept Cardiol Pulmol & Vasc Med, D-52074 Aachen, Germany
[4] BD Biosci Europe, Erembodegem, Belgium
关键词
atherosclerosis; bone marrow; remodeling; angiogenesis; leukocytes; CORONARY-ARTERY-DISEASE; TIE2-EXPRESSING MONOCYTES; VASCULAR REPAIR; NUMBER; EXPRESSION;
D O I
10.1002/cyto.a.20772
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Circulating adult CD34(+)VEGFR2(+) endothelial progenitor cells (EPCs) have been shown to differentiate into endothelial cells, thus contributing to vascular homeostasis. Furthermore, a subset of circulating CD14(+) monocytes coexpresses CD16 together with the angiopoietin receptor Tie2 and has been functionally implicated in tumor angiogenesis. However, clinically applicable protocols for flow cytometric quantification of EPCs and Tie2(+) monocytes in peripheral blood and a consensus on reference values remain elusive. The number of Tie2(+)CD14(+)CD16(mid) angiogenic monocytes and CD34(+)VEGFR2(+)CD45(low/-) EPCs was assessed in the peripheral venous blood of patients with stable coronary artery disease by three-color flow cytometry using specific monoclonal antibodies conjugated to PerCP, PE, PE-Cy7, APC, and APC-Cy7. Scatter multigating with exclusion of dead cells was performed to dissect complex mononuclear cell populations. This analysis was further refined by matching bright fluorochromes (PE-Cy7, PE, APC) with dimly expressed markers (CD34, VEGFR2, Tie2), by automatic compensation for minimizing fluorescence spillover and by using fluorescence-minus-one (FMO) controls to determine positive/negative boundaries. Presuming a Gaussian distribution, we obtained average values (mean +/- SD) of 1.45 +/- 1.29% for Tie2(+)CD14(+)CD16(mid) monocytes (n = 11, range: 0.12-3.64%) and 0.019 +/- 0.013% for CD34(+)VEGFR2(+)CD45(low/-) EPCs (n = 17, range: 0.003-0.042%). The intra- and inter-assay variability was 1.6% and 4.5%, respectively. We have optimized a fast and sensitive assay for the flow cytometric quantification of circulating angiogenic monocytes and EPCs in cardiovascular medicine. This protocol may represent a basis for standardized analysis and monitoring of these cell subsets to define their normal range and prognostic/diagnostic value in clinical use. (C) 2009 International Society for Advancement of Cytometry
引用
收藏
页码:848 / 853
页数:6
相关论文
共 50 条
  • [1] An optimized protocol for analysis of circulating angiogenic monocytes and endothelial progenitor cells by flow cytometry
    Hristov, M.
    Schmitz, S.
    Leyendecker, T.
    Schuhmann, C.
    Von Hundelshausen, P.
    Kroetz, F.
    Sohn, H. Y.
    Nauwelaers, F.
    Weber, C.
    EUROPEAN HEART JOURNAL, 2009, 30 : 359 - 360
  • [2] Optimized flow cytometric analysis of endothelial progenitor cells in peripheral blood
    Rustemeyer, P
    Wittkowski, W
    Jurk, K
    Koller, A
    JOURNAL OF IMMUNOASSAY & IMMUNOCHEMISTRY, 2006, 27 (01): : 77 - 88
  • [3] Quantification of circulating endothelial progenitor cells in human peripheral blood: Establishing a reliable flow cytometry protocol
    Masouleh, Behzad Kharabi
    Baraniskin, Alexander
    Schmiegel, Wolff
    Schroers, Roland
    JOURNAL OF IMMUNOLOGICAL METHODS, 2010, 357 (1-2) : 38 - 42
  • [4] An optimized multiplex flow cytometry protocol for the analysis of intracellular signaling in peripheral blood mononuclear cells
    Davies, Richard
    Vogelsang, Petra
    Jonsson, Roland
    Appel, Silke
    JOURNAL OF IMMUNOLOGICAL METHODS, 2016, 436 : 58 - 63
  • [5] TransFix® for delayed flow cytometry of endothelial progenitor cells and angiogenic T cells
    Hoymans, Vicky Y.
    Van Craenenbroeck, Amaryllis H.
    Bruyndonckx, Luc
    van Ierssel, Sabrina H.
    Vrints, Christiaan J.
    Conraads, Viviane M.
    Van Craenenbroeck, Emeline M.
    MICROVASCULAR RESEARCH, 2012, 84 (03) : 384 - 386
  • [6] Measuring angiogenic cytokines, circulating endothelial cells, and endothelial progenitor cells in peripheral blood and cord blood: VEGF and CXCL12 correlate with the number of circulating endothelial progenitor cells in peripheral blood
    Smythe, Jon
    Fox, Andreas
    Fisher, Nita
    Frith, Emma
    Harris, Adrian L.
    Watt, Suzanne M.
    TISSUE ENGINEERING PART C-METHODS, 2008, 14 (01) : 59 - 67
  • [7] Blood monocytes mimic endothelial progenitor cells
    Rohde, Eva
    Malischnik, Christina
    Thaler, Daniela
    Maierhofer, Theresa
    Linkesch, Werner
    Lanzer, Gerhard
    Guelly, Christian
    Strunk, Dirk
    STEM CELLS, 2006, 24 (02) : 357 - 367
  • [9] Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry
    Khan, SS
    Solomon, MA
    McCoy, JP
    CYTOMETRY PART B-CLINICAL CYTOMETRY, 2005, 64B (01) : 1 - 8
  • [10] Detection of endothelial progenitor cells by flow cytometry and laser scanning cytometry
    Lenz, D
    Lenk, K
    Adams, V
    Hambrecht, R
    Tarnok, A
    CYTOMETRY, 2002, : 99 - 100