Adaptive Management of Multigranular Spatio-Temporal Object Attributes

被引:0
|
作者
Camossi, Elena [1 ]
Bertino, Elisa [2 ]
Guerrini, Giovanna [3 ]
Bertolotto, Michela [1 ]
机构
[1] Univ Coll Dublin, Sch Comp Sci & Informat, Dublin 4, Ireland
[2] Purdue Univ, CERIAS, W Lafayette, IN 47907 USA
[3] Univ Genoa, DISI, I-16146 Genoa, Italy
来源
ADVANCES IN SPATIAL AND TEMPORAL DATABASES, PROCEEDINGS | 2009年 / 5644卷
基金
爱尔兰科学基金会;
关键词
AGGREGATIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In applications involving spatio-temporal modelling, granularities of data may have to adapt according to the evolving semantics and significance of data. In this paper we define ST2-ODMGe, a multigranular spatio-temporal model supporting evolutions, which encompass the dynamic adaptation of attribute granularities, and the deletion of attribute values. Evolutions are specified as Event - Condition - Action rules and are executed at run-time. The event, the condition, and the action may refer to a period of time and a geographical area. The evolution may also be constrained by the attribute values. The ability of dynamically evolving the object attributes results in a more flexible management of multigranular spatio-temporal data but it requires revisiting the notion of object consistency with respect to class definitions and access to multigranular object values. Both issues are formally investigated in the paper.
引用
收藏
页码:320 / +
页数:2
相关论文
共 50 条
  • [41] SPATIO-TEMPORAL CORRELATION LEARNING FOR MULTIPLE OBJECT TRACKING
    Jian, Yajun
    Zhuang, Chihui
    He, Wenyan
    Du, Kaiwen
    Lu, Yang
    Wang, Hanzi
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6170 - 6174
  • [42] Moving object detection by a novel spatio-temporal segmentation
    Jia, HT
    Xie, M
    VISUAL INFORMATION PROCESSING XIV, 2005, 5817 : 312 - 320
  • [43] A spatio-temporal video analysis system for object segmentation
    Xia, JH
    Wang, YL
    ISPA 2003: PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, PTS 1 AND 2, 2003, : 812 - 815
  • [44] Learning spatio-temporal patterns for predicting object behaviour
    Sumpter, N
    Bulpitt, A
    IMAGE AND VISION COMPUTING, 2000, 18 (09) : 697 - 704
  • [45] Dynamic Multiple Object Segmentation with Spatio-Temporal Filtering
    Yang, Wenguang
    Ren, Kan
    Wan, Minjie
    Kong, Xiaofang
    Qian, Weixian
    SENSORS, 2024, 24 (07)
  • [46] Mining spatio-temporal patterns in object mobility databases
    Verhein, Florian
    Chawla, Sanjay
    DATA MINING AND KNOWLEDGE DISCOVERY, 2008, 16 (01) : 5 - 38
  • [47] Spatio-temporal influences at the neural level of object recognition
    Wallis, G
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1998, 9 (02) : 265 - 278
  • [48] Spatio-Temporal Closed-Loop Object Detection
    Galteri, Leonardo
    Seidenari, Lorenzo
    Bertini, Marco
    Del Bimbo, Alberto
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (03) : 1253 - 1263
  • [49] Spatio-temporal uml methodology: Extending and integrating existing object-oriented methods to develop spatio-temporal databases
    Svinterikou, Marianthi
    Kanaroglou, Pavlos
    PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON DATABASES AND APPLICATIONS, 2006, : 188 - +
  • [50] Spatio-temporal ecology and management of cabbage maggot
    Dalthorp, D.
    Dreves, A. J.
    ENVIRONMENTAL ENTOMOLOGY, 2008, 37 (02) : 409 - 418