Making nondeterminism unambiguous

被引:55
作者
Reinhardt, K
Allender, E
机构
[1] Univ Tubingen, Wilhelm Schickard Inst Informat, D-72076 Tubingen, Germany
[2] Rutgers State Univ, Dept Comp Sci, Piscataway, NJ 08855 USA
关键词
nondeterministic space; unambiguous computation; NLOG; ULOG; LogCFL;
D O I
10.1137/S0097539798339041
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that in the context of nonuniform complexity, nondeterministic logarithmic space bounded computation can be made unambiguous. An analogous result holds for the class of problems reducible to context-free languages. In terms of complexity classes, this can be stated as [GRAPHICS]
引用
收藏
页码:1118 / 1131
页数:14
相关论文
共 44 条
[1]  
Agrawal M, 1997, TWELFTH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, P134, DOI 10.1109/CCC.1997.612309
[2]  
Allender E, 1996, RAIRO-INF THEOR APPL, V30, P1
[3]  
Allender E., 1997, SIGACT News, V28, P2, DOI 10.1145/270563.270564
[4]  
Allender E, 1998, THEOR COMPUT SYST, V31, P539, DOI 10.1007/s002240000102
[5]   Isolation, matching, and counting [J].
Allender, E ;
Reinhardt, K .
THIRTEENTH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY - PROCEEDINGS, 1998, :92-100
[6]  
ALLENDER E, IN PRESS J COMPUT SY
[7]  
ALLENDER E, 1996, ACM S THEOR COMP STO
[8]   A VERY HARD LOG-SPACE COUNTING CLASS [J].
ALVAREZ, C ;
JENNER, B .
THEORETICAL COMPUTER SCIENCE, 1993, 107 (01) :3-30
[9]  
BEIGEL R, 1997, IEEE C COMP COMPL, P24
[10]   2 APPLICATIONS OF INDUCTIVE COUNTING FOR COMPLEMENTATION PROBLEMS [J].
BORODIN, A ;
COOK, SA ;
DYMOND, PW ;
RUZZO, WL ;
TOMPA, M .
SIAM JOURNAL ON COMPUTING, 1989, 18 (03) :559-578