A priori error estimation for the dual mixed finite element method of the elastodynamic problem in a polygonal domain, I

被引:9
|
作者
Boulaajine, L. [2 ]
Farhloul, M. [1 ]
Paquet, L. [2 ]
机构
[1] Univ Moncton, Dept Math & Stat, Moncton, NB E1A 3E9, Canada
[2] Univ Valenciennes & Hainaut Cambresis, MACS, ISTV, F-59313 Valenciennes 9, France
关键词
Sobolev spaces; Elastodynamic; Dual mixed finite element; Newmark scheme; Lagrange multiplier; Hybrid formulation; Error estimation; ELASTICITY;
D O I
10.1016/j.cam.2009.03.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze a new dual mixed formulation of the elastodynamic system in polygonal domains. In this formulation the symmetry of the strain tensor is relaxed by the rotation of the displacement. For the time discretization of this new dual mixed formulation, we use an explicit scheme. After the analysis of stability of the fully discrete scheme, L-infinity in time, L-2 in space a priori error estimates are derived for the approximation of the displacement, the strain, the pressure and the rotation. Numerical experiments confirm our theoretical predictions. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:447 / 472
页数:26
相关论文
共 35 条
  • [21] An efficient method for computing local quantities of interest in elasticity based on finite element error estimation
    Xuan, Z. C.
    Yang, D. Q.
    Peng, J. W.
    ARCHIVE OF APPLIED MECHANICS, 2008, 78 (07) : 517 - 529
  • [22] Locally equilibrated stress recovery for goal oriented error estimation in the extended finite element method
    Gonzalez-Estrada, O. A.
    Rodenas, J. J.
    Bordas, S. P. A.
    Nadal, E.
    Kerfriden, P.
    Fuenmayor, F. J.
    COMPUTERS & STRUCTURES, 2015, 152 : 1 - 10
  • [23] An efficient method for computing local quantities of interest in elasticity based on finite element error estimation
    Z. C. Xuan
    D. Q. Yang
    J. W. Peng
    Archive of Applied Mechanics, 2008, 78 : 517 - 529
  • [24] Calculation of complementary solutions in 2D finite element method application to error estimation
    Marmin, F
    Clénet, S
    Bouillault, F
    Piriou, F
    IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (04) : 1583 - 1587
  • [25] Error estimation for the finite element evaluation of GI and GII in mixed-mode linear elastic fracture mechanics
    Giner, E
    Fuenmayor, FJ
    Baeza, L
    Tarancón, JE
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2005, 41 (11-12) : 1079 - 1104
  • [26] A Reliable Residual Based A Posteriori Error Estimator for a Quadratic Finite Element Method for the Elliptic Obstacle Problem
    Gudi, Thirupathi
    Porwal, Kamana
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2015, 15 (02) : 145 - 160
  • [27] An efficient finite-element method and error analysis for the fourth-order elliptic equation in a circular domain
    Peng, Na
    Wang, Caiqun
    An, Jing
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (09) : 1785 - 1802
  • [28] Space enrichment method for finite element approximation of mixed boundary problem in two-dimensional elasticity
    Volpert, Y
    Szabo, BA
    CRITICAL LINK: DIAGNOSIS TO PROGNOSIS, 1997, : 589 - 598
  • [29] Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity
    Gonzalez-Estrada, Octavio A.
    Natarajan, Sundararajan
    Jose Rodenas, Juan
    Hung Nguyen-Xuan
    Bordas, Stephane P. A.
    COMPUTATIONAL MECHANICS, 2013, 52 (01) : 37 - 52
  • [30] Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity
    Octavio A. González-Estrada
    Sundararajan Natarajan
    Juan José Ródenas
    Hung Nguyen-Xuan
    Stéphane P. A. Bordas
    Computational Mechanics, 2013, 52 : 37 - 52