A priori error estimation for the dual mixed finite element method of the elastodynamic problem in a polygonal domain, I

被引:9
作者
Boulaajine, L. [2 ]
Farhloul, M. [1 ]
Paquet, L. [2 ]
机构
[1] Univ Moncton, Dept Math & Stat, Moncton, NB E1A 3E9, Canada
[2] Univ Valenciennes & Hainaut Cambresis, MACS, ISTV, F-59313 Valenciennes 9, France
关键词
Sobolev spaces; Elastodynamic; Dual mixed finite element; Newmark scheme; Lagrange multiplier; Hybrid formulation; Error estimation; ELASTICITY;
D O I
10.1016/j.cam.2009.03.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze a new dual mixed formulation of the elastodynamic system in polygonal domains. In this formulation the symmetry of the strain tensor is relaxed by the rotation of the displacement. For the time discretization of this new dual mixed formulation, we use an explicit scheme. After the analysis of stability of the fully discrete scheme, L-infinity in time, L-2 in space a priori error estimates are derived for the approximation of the displacement, the strain, the pressure and the rotation. Numerical experiments confirm our theoretical predictions. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:447 / 472
页数:26
相关论文
共 20 条
[1]   Mixed finite element methods for linear elasticity with weakly imposed symmetry [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
MATHEMATICS OF COMPUTATION, 2007, 76 (260) :1699-1723
[2]   A new family of mixed finite elements for the linear elastodynamic problem [J].
Bécache, E ;
Joly, P ;
Tsogka, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) :2109-2132
[3]  
BOULAAJINE L, PRIORI ERROR E UNPUB, V2
[4]  
Ciarlet PG., 1991, Handbook of numerical analysis, VVol. II, P17
[5]  
DAUGE M, 1988, LECT NOTES MATH, V1341, P1
[6]  
ELSOSSA H, 2001, THESIS U VALENCIENNE
[7]  
ELSOSSA H, 2002, ADV MATH SCI APPL, V12, P607
[8]   A mixed nonconforming finite element for the elasticity and Stokes problems [J].
Farhloul, M ;
Fortin, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (08) :1179-1199
[9]   Refined mixed finite element method for the elasticity problem in a polygonal domain [J].
Farhloul, M ;
Paquet, L .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2002, 18 (03) :323-339
[10]  
Fortin M., 1991, Mixed and Hybrid Finite Element Methods