The mean curvature of cylindrically bounded submanifolds

被引:23
作者
Alias, Luis J. [1 ]
Bessa, G. Pacelli [2 ]
Dajczer, Marcos [3 ]
机构
[1] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
[2] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
[3] IMPA, BR-22460320 Rio De Janeiro, Brazil
关键词
MINIMAL-SURFACES; MANIFOLDS;
D O I
10.1007/s00208-009-0357-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an estimate of the mean curvature of a complete submanifold lying inside a closed cylinder B(r) x R-l in a product Riemannian manifold Nn-l x R-l. It follows that a complete hypersurface of given constant mean curvature lying inside a closed circular cylinder in Euclidean space cannot be proper if the circular base is of sufficiently small radius. In particular, any possible counterexample to a conjecture of Calabi on complete minimal hypersurfaces cannot be proper. As another application of our method, we derive a result about the stochastic incompleteness of submanifolds with sufficiently small mean curvature.
引用
收藏
页码:367 / 376
页数:10
相关论文
共 15 条
[11]  
MARKVORSEN S, 1989, J DIFFER GEOM, V29, P1
[12]   A complete bounded minimal cylinder in R3 [J].
Martín, F ;
Morales, S .
MICHIGAN MATHEMATICAL JOURNAL, 2000, 47 (03) :499-514
[13]   Hadamard's and Calabi-Yau's conjectures on negatively curved and minimal surfaces [J].
Nadirashvili, N .
INVENTIONES MATHEMATICAE, 1996, 126 (03) :457-465
[14]   A remark on the maximum principle and stochastic completeness [J].
Pigola, S ;
Rigoli, M ;
Setti, AG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (04) :1283-1288
[15]  
Pigola S., 2005, Mem. Am. Math. Soc., V822