Active MEMS metamaterials for THz bandwidth control

被引:37
作者
Shih, Kailing [1 ,2 ,3 ,4 ]
Pitchappa, Prakash [1 ,2 ,4 ]
Manjappa, Manukumara [5 ]
Ho, Chong Pei [1 ,2 ,3 ,4 ]
Singh, Ranjan [5 ]
Yang, Bin
Singh, Navab [6 ]
Lee, Chengkuo [1 ,2 ,4 ,7 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[2] NUS Suzhou Res Inst NUSRI, Ind Pk, Suzhou 215123, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Micro Nano Elect, Shanghai 200240, Peoples R China
[4] Natl Univ Singapore, Ctr Intelligent Sensors & MEMS CISM, Singapore 117576, Singapore
[5] Nanyang Technol Univ, Sch Phys & New Math Sci, Ctr Disrupt Photon Technol, Div Phys & Appl Phys, Singapore 637371, Singapore
[6] Inst Microelect IME, 11 Sci Pk Rd, Singapore 117685, Singapore
[7] Natl Univ Singapore, Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore
基金
中国国家自然科学基金;
关键词
TERAHERTZ METAMATERIAL;
D O I
10.1063/1.4980115
中图分类号
O59 [应用物理学];
学科分类号
摘要
We experimentally demonstrate a microelectromechanical system (MEMS) based metamaterial with actively tunable resonance bandwidth characteristics, operating in the terahertz (THz) spectral region. The broadband resonance characteristic feature of the MEMS metamaterial is achieved by integrating sixteen microcantilever resonators of identical lengths but with continuously varying release lengths, to form a supercell. The MEMS metamaterial showed broadband resonance characteristics with a full width half maximum (FWHM) value of 175GHz for resonators with a metal thickness of 900nm and was further improved to 225GHz by reducing the metal thickness to 500 nm. The FWHM resonance bandwidth of the MEMS metamaterial was actively switched to 90GHz by electrostatically controlling the out-of-plane release height of the constituent microcantilever resonators. Furthermore, the electrically controlled resonance bandwidth allows for the active phase engineering with relatively constant intensity at a given frequency based on the reconfiguration state of the MEMS metamaterial. This enables a pathway for the realization of actively controlled transmission or reflection based on dynamically programmable THz metamaterials. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 48 条
[1]  
[Anonymous], 2013, AERONAUT MANUF TECHN
[2]   Experimental demonstration of frequency-agile terahertz metamaterials [J].
Chen, Hou-Tong ;
O'Hara, John F. ;
Azad, Abul K. ;
Taylor, Antoinette J. ;
Averitt, Richard D. ;
Shrekenhamer, David B. ;
Padilla, Willie J. .
NATURE PHOTONICS, 2008, 2 (05) :295-298
[3]   Active terahertz metamaterial devices [J].
Chen, Hou-Tong ;
Padilla, Willie J. ;
Zide, Joshua M. O. ;
Gossard, Arthur C. ;
Taylor, Antoinette J. ;
Averitt, Richard D. .
NATURE, 2006, 444 (7119) :597-600
[4]   A broadband planar terahertz metamaterial with nested structure [J].
Chowdhury, Dibakar Roy ;
Singh, Ranjan ;
Reiten, Matthew ;
Chen, Hou-Tong ;
Taylor, Antoinette J. ;
O'Hara, John F. ;
Azad, Abul K. .
OPTICS EXPRESS, 2011, 19 (17) :15817-15823
[5]   Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms [J].
Cong, Longqing ;
Pitchappa, Prakash ;
Wu, Yang ;
Ke, Lin ;
Lee, Chengkuo ;
Singh, Navab ;
Yang, Hyunsoo ;
Singh, Ranjan .
ADVANCED OPTICAL MATERIALS, 2017, 5 (02)
[6]   Coding metamaterials, digital metamaterials and programmable metamaterials [J].
Cui, Tie Jun ;
Qi, Mei Qing ;
Wan, Xiang ;
Zhao, Jie ;
Cheng, Qiang .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e218-e218
[7]   Ultrabroadband strong light absorption based on thin multilayered metamaterials [J].
Ding, Fei ;
Jin, Yi ;
Li, Borui ;
Cheng, Hao ;
Mo, Lei ;
He, Sailing .
LASER & PHOTONICS REVIEWS, 2014, 8 (06) :946-953
[8]   Broadband diffusion of terahertz waves by multi-bit coding metasurfaces [J].
Gao, Li-Hua ;
Cheng, Qiang ;
Yang, Jing ;
Ma, Shao-Jie ;
Zhao, Jie ;
Liu, Shuo ;
Chen, Hai-Bing ;
He, Qiong ;
Jiang, Wei-Xiang ;
Ma, Hui-Feng ;
Wen, Qi-Ye ;
Liang, Lan-Ju ;
Jin, Biao-Bing ;
Liu, Wei-Wei ;
Zhou, Lei ;
Yao, Jian-Quan ;
Wu, Pei-Heng ;
Cui, Tie-Jun .
LIGHT-SCIENCE & APPLICATIONS, 2015, 4 :e324-e324
[9]   A broadband low-reflection metamaterial absorber [J].
Gu, S. ;
Barrett, J. P. ;
Hand, T. H. ;
Popa, B. -I. ;
Cummer, S. A. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (06)
[10]   Planar isotropic broadband metamaterial absorber [J].
Gu, Shuai ;
Su, Bin ;
Zhao, Xiaopeng .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (16)