Smooth classification of Cartan actions of higher rank semisimple Lie groups and their lattices

被引:12
作者
Goetze, ER [1 ]
Spatzier, RJ [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
关键词
D O I
10.2307/121055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected semisimple Lie group without compact factors ts;hose real rank is at least 2, and let Gamma subset of G be an irreducible lattice. We provide a C-infinity classification for volume-preserving Cartan actions of Gamma and G. Also, if G has real rank at least 3, we provide a C-infinity classification for volume-preserving, multiplicity free, trellised, Anosov actions on compact manifolds.
引用
收藏
页码:743 / 773
页数:31
相关论文
共 30 条
[1]  
ANOSOV DV, 1967, P STEKLOV I MATH, V90
[2]  
Brown Morton, 1961, Proc. Amer. Math. Soc., V12, P812, DOI DOI 10.2307/2034881
[3]  
Calabi E., 1970, Duke Math. J, V37, P741, DOI DOI 10.1215/S0012-7094-70-03789-0
[4]  
Feres R, 1995, J DIFFER GEOM, V42, P554
[5]   A POISSON FORMULA FOR SEMI-SIMPLE LIE GROUPS [J].
FURSTENBERG, H .
ANNALS OF MATHEMATICS, 1963, 77 (02) :335-&
[6]   On Livsic's theorem, superrigidity, and Anosov actions of semisimple lie groups [J].
Goetze, ER ;
Spatzier, RJ .
DUKE MATHEMATICAL JOURNAL, 1997, 88 (01) :1-27
[7]  
GOETZE ER, 1994, J DIFFER GEOM, V40, P595
[8]  
Greenberg M. J., 1981, ALGEBRAIC TOPOLOGY 1
[9]  
Hirsch MW., 1977, LECT NOTES MATH, DOI 10.1007/BFb0092042
[10]  
HURDER S, 1995, J DIFFER GEOM, V41, P515