Caging Nb2O5 Nanowires in PECVD-Derived Graphene Capsules toward Bendable Sodium-Ion Hybrid Supercapacitors

被引:209
作者
Wang, Xiangguo [1 ]
Li, Qiucheng [1 ]
Zhang, Li [1 ]
Hu, Zhongli [1 ]
Yu, Lianghao [1 ]
Jiang, Tao [1 ]
Lu, Chen [1 ]
Yan, Chenglin [1 ]
Sun, Jingyu [1 ]
Liu, Zhongfan [1 ,2 ]
机构
[1] Soochow Univ, Key Lab Adv Carbon Mat & Wearable Energy Technol, Coll Phys, Soochow Inst Energy & Mat Innovat SIEMIS, Suzhou 215006, Peoples R China
[2] Peking Univ, Coll Chem & Mol Engn, Ctr Nanochem CNC, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
direct growth; graphene capsules; Nb2O5; nanowires; plasma-enhanced CVD; sodium-ion hybrid supercapacitors; ELECTROCHEMICAL ENERGY-STORAGE; NANOSHEETS; ULTRAFAST; BATTERIES; CATHODE; LI;
D O I
10.1002/adma.201800963
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion hybrid supercapacitors (Na-HSCs) by virtue of synergizing the merits of batteries and supercapacitors have attracted considerable attention for high-energy and high-power energy-storage applications. Orthorhombic Nb2O5 (T-Nb2O5) has recently been recognized as a promising anode material for Na-HSCs due to its typical pseudocapacitive feature, but it suffers from intrinsically low electrical conductivity. Reasonably high electrochemical performance of T-Nb2O5-based electrodes could merely be gained to date when sufficient carbon content was introduced. In addition, flexible Na-HSC devices have scarcely been demonstrated by far. Herein, an in situ encapsulation strategy is devised to directly grow ultrathin graphene shells over T-Nb2O5 nanowires (denoted as Gr-Nb2O5 composites) by plasma-enhanced chemical vapor deposition, targeting a highly conductive anode material for Na-HSCs. The few-layered graphene capsules with ample topological defects would enable facile electron and Na+ ion transport, guaranteeing rapid pseudocapacitive processes at the Nb2O5/electrolyte interface. The Na-HSC full-cell comprising a Gr-Nb2O5 anode and an activated carbon cathode delivers high energy/power densities (112.9 Wh kg(-1)/80.1 W kg(-1) and 62.2 Wh kg(-1)/5330 W kg(-1)), outperforming those of recently reported Na-HSC counterparts. Proof-of-concept Na-HSC devices with favorable mechanical robustness manifest stable electrochemical performances under different bending conditions and after various bending-release cycles.
引用
收藏
页数:10
相关论文
共 48 条
  • [1] Nb 3d and O 1s core levels and chemical bonding in niobates
    Atuchin, VV
    Kalabin, IE
    Kesler, VG
    Pervukhina, NV
    [J]. JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2005, 142 (02) : 129 - 134
  • [2] Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
  • [3] High performance sodium-ion hybrid capacitor based on Na2Ti2O4(OH)2 nanostructures
    Babu, Binson
    Shaijumon, M. M.
    [J]. JOURNAL OF POWER SOURCES, 2017, 353 : 85 - 94
  • [4] Nanoscale mapping of ion diffusion in a lithium-ion battery cathode
    Balke, N.
    Jesse, S.
    Morozovska, A. N.
    Eliseev, E.
    Chung, D. W.
    Kim, Y.
    Adamczyk, L.
    Garcia, R. E.
    Dudney, N.
    Kalinin, S. V.
    [J]. NATURE NANOTECHNOLOGY, 2010, 5 (10) : 749 - 754
  • [5] Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance
    Chao, Dongliang
    Zhu, Changrong
    Yang, Peihua
    Xia, Xinhui
    Liu, Jilei
    Wang, Jin
    Fan, Xiaofeng
    Savilov, Serguei V.
    Lin, Jianyi
    Fan, Hong Jin
    Shen, Ze Xiang
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [6] High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically Porous Nanowire Composites
    Chen, Zheng
    Augustyn, Veronica
    Jia, Xilai
    Xiao, Qiangfeng
    Dunn, Bruce
    Lu, Yunfeng
    [J]. ACS NANO, 2012, 6 (05) : 4319 - 4327
  • [7] Reduced Graphene Oxide Paper Electrode: Opposing Effect of Thermal Annealing on Li and Na Cyclability
    David, Lamuel
    Singh, Gurpreet
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (49) : 28401 - 28408
  • [8] MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes
    David, Lamuel
    Bhandavat, Romil
    Singh, Gurpreet
    [J]. ACS NANO, 2014, 8 (02) : 1759 - 1770
  • [9] An investigation of spinel NiCo2O4 as anode for Na-ion capacitors
    Ding, Rui
    Qi, Li
    Wang, Hongyu
    [J]. ELECTROCHIMICA ACTA, 2013, 114 : 726 - 735
  • [10] Flexible Sodium-Ion Pseudocapacitors Based on 3D Na2Ti3O7 Nanosheet Arrays/Carbon Textiles Anodes
    Dong, Shengyang
    Shen, Laifa
    Li, Hongsen
    Pang, Gang
    Dou, Hui
    Zhang, Xiaogang
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (21) : 3703 - 3710