Characterisation of copper oxide nanoparticles for antimicrobial applications

被引:1141
作者
Ren, Guogang [2 ]
Hu, Dawei [3 ]
Cheng, Eileen W. C. [3 ]
Vargas-Reus, Miguel A. [1 ]
Reip, Paul [4 ]
Allaker, Robert P. [1 ]
机构
[1] Queen Mary Univ London, Barts & London Sch Med & Dent, London E1 2AT, England
[2] Univ Hertfordshire, Sch Aerosp Automot Design & Engn, Hatfield AL10 9AB, Herts, England
[3] Queen Mary Univ London, Dept Mat, London E1 2AT, England
[4] Intrinsiq Mat Ltd, Farnborough GU14 0LX, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
Nanoparticle; Copper oxide; CuO; Antimicrobial; Cross-infection control; SILVER NANOPARTICLES; SUPERCONDUCTORS; BACTERIA;
D O I
10.1016/j.ijantimicag.2008.12.004
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Copper oxide (CuO) nanoparticles were characterised and investigated with respect to potential antimicrobial applications. It was found that nanoscaled CuO, generated by thermal plasma technology, contains traces of pure Cu and Cu2O nanoparticles. Transmission electron microscopy (TEM) demonstrated particle sizes in the range 20-95 nm. TEM energy dispersive spectroscopy gave the ratio of copper to oxygen elements as 54.18% to 45.26%. The mean surface area was determined as 15.69 m(2)/g by Brunau-Emmet-Teller (BET) analysis. CuO nanoparticles in suspension showed activity against a range of bacterial pathogens, including meticillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli, with minimum bactericidal concentrations (MBCs) ranging from 100 mu g/mL to 5000 mu g/mL. The ability of CuO nanoparticles to reduce bacterial populations to zero was enhanced in the presence of sub-MBC concentrations of silver nanoparticles. Studies of CuO nanoparticles incorporated into polymers suggest release of ions may be required for optimum killing. (C) 2009 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
引用
收藏
页码:587 / 590
页数:4
相关论文
共 12 条
[1]   Potential impact of nanotechnology on the control of infectious diseasesl [J].
Allaker, Robert P. ;
Ren, Guogang .
TRANSACTIONS OF THE ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE, 2008, 102 (01) :1-2
[2]   Mechanisms of adrenomedullin antimicrobial action [J].
Allaker, RP ;
Grosvenor, PW ;
McAnerney, DC ;
Sheehan, BE ;
Srikanta, BH ;
Pell, K ;
Kapas, S .
PEPTIDES, 2006, 27 (04) :661-666
[3]   STRUCTURAL CHEMISTRY AND THE LOCAL CHARGE PICTURE OF COPPER-OXIDE SUPERCONDUCTORS [J].
CAVA, RJ .
SCIENCE, 1990, 247 (4943) :656-662
[4]   Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties [J].
Cioffi, N ;
Torsi, L ;
Ditaranto, N ;
Tantillo, G ;
Ghibelli, L ;
Sabbatini, L ;
Bleve-Zacheo, T ;
D'Alessio, M ;
Zambonin, PG ;
Traversa, E .
CHEMISTRY OF MATERIALS, 2005, 17 (21) :5255-5262
[5]   Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions [J].
Kawahara, K ;
Tsuruda, K ;
Morishita, M ;
Uchida, M .
DENTAL MATERIALS, 2000, 16 (06) :452-455
[6]  
Kwak K, 2005, KOREA-AUST RHEOL J, V17, P35
[7]   Two-level antibacterial coating with both release-killing and contact-killing capabilities [J].
Li, Zhi ;
Lee, Daeyeon ;
Sheng, Xiaoxia ;
Cohen, Robert E. ;
Rubner, Michael F. .
LANGMUIR, 2006, 22 (24) :9820-9823
[8]   The bactericidal effect of silver nanoparticles [J].
Morones, JR ;
Elechiguerra, JL ;
Camacho, A ;
Holt, K ;
Kouri, JB ;
Ramírez, JT ;
Yacaman, MJ .
NANOTECHNOLOGY, 2005, 16 (10) :2346-2353
[9]   Silver nanoparticles as antimicrobial agent:: a case study on E-coli as a model for Gram-negative bacteria [J].
Sondi, I ;
Salopek-Sondi, B .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2004, 275 (01) :177-182
[10]   Metal oxide nanoparticles as bactericidal agents [J].
Stoimenov, PK ;
Klinger, RL ;
Marchin, GL ;
Klabunde, KJ .
LANGMUIR, 2002, 18 (17) :6679-6686