Denoising Architecture for Unsupervised Anomaly Detection in Time-Series

被引:0
作者
Skaf, Wadie [1 ]
Horvath, Tomas [1 ]
机构
[1] Eotvos Lorand Univ, Telekom Innovat Labs, Data Sci & Engn Dept DSED, Fac Informat, Pazmany Peter Stny 1-A, H-1117 Budapest, Hungary
来源
NEW TRENDS IN DATABASE AND INFORMATION SYSTEMS, ADBIS 2022 | 2022年 / 1652卷
关键词
Anomaly detection; Time-series; Autoencoder;
D O I
10.1007/978-3-031-15743-1_17
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anomalies in time-series provide insights of critical scenarios across a range of industries, from banking and aerospace to information technology, security, and medicine. However, identifying anomalies in time-series data is particularly challenging due to the imprecise definition of anomalies, the frequent absence of labels, and the enormously complex temporal correlations present in such data. The LSTM Autoencoder is an Encoder-Decoder scheme for Anomaly Detection based on Long Short Term Memory Networks that learns to reconstruct time-series behavior and then uses reconstruction error to identify abnormalities. We introduce the Denoising Architecture as a complement to this LSTM Encoder-Decoder model and investigate its effect on real-world as well as artificially generated datasets. We demonstrate that the proposed architecture increases both the accuracy and the training speed, thereby, making the LSTM Autoencoder more efficient for unsupervised anomaly detection tasks.
引用
收藏
页码:178 / 187
页数:10
相关论文
共 25 条
[1]  
Amer M., 2013, P ACM SIGKDD WORKSHO, P8, DOI [10.1145/2500853.2500857, DOI 10.1145/2500853.2500857]
[2]  
An J., 2015, Spec. Lect. IE, V2, P1
[3]  
[Anonymous], 2007, GI ITG WORKSH MMBNET
[4]  
Bin Z, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4433
[5]  
Douglas H, 1980, IDENTIFICATION OUTLI, V11, DOI [10.1007/978-94-015-3994-4, DOI 10.1007/978-94-015-3994-4]
[6]   High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning [J].
Erfani, Sarah M. ;
Rajasegarar, Sutharshan ;
Karunasekera, Shanika ;
Leckie, Christopher .
PATTERN RECOGNITION, 2016, 58 :121-134
[7]   Deep learning for time series classification: a review [J].
Fawaz, Hassan Ismail ;
Forestier, Germain ;
Weber, Jonathan ;
Idoumghar, Lhassane ;
Muller, Pierre-Alain .
DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 33 (04) :917-963
[8]  
Fontugne Romain, 2010, ACM CONEXT 2010, DOI DOI 10.1145/1921168.1921179
[9]   TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks [J].
Geiger, Alexander ;
Liu, Dongyu ;
Alnegheimish, Sarah ;
Cuesta-Infante, Alfredo ;
Veeramachaneni, Kalyan .
2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, :33-43
[10]  
Knorn F, 2008, ADAPTIVE KALMAN FILT, P1, DOI [10.1109/INFOCOM.2008.4544581, DOI 10.1109/INFOCOM.2008.4544581]