Integrative and Personalized QSAR Analysis in Cancer by Kernelized Bayesian Matrix Factorization

被引:96
作者
Amnnad-ud-din, Muhammad [1 ]
Georgii, Elisabeth [1 ]
Gonen, Mehmet [1 ]
Laitinen, Tuomo [2 ]
Kallioniemi, Olli [3 ]
Wennerberg, Krister [3 ]
Poso, Antti [2 ,4 ]
Kaski, Samuel [1 ,5 ]
机构
[1] Aalto Univ, Dept Informat & Comp Sci, HIIT, Espoo 00076, Finland
[2] Univ Eastern Finland, Fac Hlth Sci, Sch Pharm, Kuopio 70211, Finland
[3] Univ Helsinki, Inst Mol Med Finland FIMM, FIN-00014 Helsinki, Finland
[4] Univ Tubingen Hosp, Dept Internal Med 1, Div Mol Oncol Solid Tumors, D-72076 Tubingen, Germany
[5] Univ Helsinki, Dept Comp Sci, HIIT, Helsinki 00014, Finland
基金
芬兰科学院;
关键词
CELL-LINES; DRUG; PATHWAY; DESCRIPTORS; VALIDATION; PREDICTION; INHIBITORS; SELECTION;
D O I
10.1021/ci500152b
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
With data from recent large-scale drug sensitivity measurement campaigns, it is now possible to build and test models predicting responses for more than one hundred anticancer drugs against several hundreds of human cancer cell lines. Traditional quantitative structure-activity relationship (QSAR) approaches focus on small molecules in searching for their structural properties predictive of the biological activity in a single cell line or a single tissue type. We extend this line of research in two directions: (1) an integrative QSAR approach predicting the responses to new drugs for a panel of multiple known cancer cell lines simultaneously and (2) a personalized QSAR approach predicting the responses to new drugs for new cancer cell lines. To solve the modeling task, we apply a novel kernelized Bayesian matrix factorization method. For maximum applicability and predictive performance, the method optionally utilizes genomic features of cell lines and target information on drugs in addition to chemical drug descriptors. In a case study with 116 anticancer drugs and 650 cell lines, we demonstrate the usefulness of the method in several relevant prediction scenarios, differing in the amount of available information, and analyze the importance of various types of drug features for the response prediction. Furthermore, after predicting the missing values of the data set, a complete global map of drug response is explored to assess treatment potential and treatment range of therapeutically interesting anticancer drugs.
引用
收藏
页码:2347 / 2359
页数:13
相关论文
共 38 条
[1]  
[Anonymous], 2012, GEN DRUG SENS CANC
[2]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[3]  
Beal M. J., 2003, VARIATIONAL ALGORITH
[4]  
Bolton EE, 2010, ANN REP COMP CHEM, V4, P217, DOI 10.1016/S1574-1400(08)00012-1
[5]   A community effort to assess and improve drug sensitivity prediction algorithms [J].
Costello, James C. ;
Heiser, Laura M. ;
Georgii, Elisabeth ;
Gonen, Mehmet ;
Menden, Michael P. ;
Wang, Nicholas J. ;
Bansal, Mukesh ;
Ammad-ud-din, Muhammad ;
Hintsanen, Petteri ;
Khan, Suleiman A. ;
Mpindi, John-Patrick ;
Kallioniemi, Olli ;
Honkela, Antti ;
Aittokallio, Tero ;
Wennerberg, Krister ;
Collins, James J. ;
Gallahan, Dan ;
Singer, Dinah ;
Saez-Rodriguez, Julio ;
Kaski, Samuel ;
Gray, Joe W. ;
Stolovitzky, Gustavo .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1202-U57
[6]   COMPARATIVE MOLECULAR-FIELD ANALYSIS (COMFA) .1. EFFECT OF SHAPE ON BINDING OF STEROIDS TO CARRIER PROTEINS [J].
CRAMER, RD ;
PATTERSON, DE ;
BUNCE, JD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1988, 110 (18) :5959-5967
[7]   Molecular fields in quantitative structure-permeation relationships: the VolSurf approach [J].
Cruciani, C ;
Crivori, P ;
Carrupt, PA ;
Testa, B .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2000, 503 (1-2) :17-30
[8]   Development and validation of AMANDA, a new algorithm for selecting highly relevant regions in molecular interaction fields [J].
Duran, Angel ;
Martinez, Guillermo C. ;
Pastor, Manuel .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2008, 48 (09) :1813-1823
[9]   Suitability of GRIND-Based Principal Properties for the Description of Molecular Similarity and Ligand-Based Virtual Screening [J].
Duran, Angel ;
Zamora, Ismael ;
Pastor, Manuel .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2009, 49 (09) :2129-2138
[10]   Integrated QSAR study for inhibitors of hedgehog signal pathway against multiple cell lines: a collaborative filtering method [J].
Gao, Jun ;
Che, Dongsheng ;
Zheng, Vincent W. ;
Zhu, Ruixin ;
Liu, Qi .
BMC BIOINFORMATICS, 2012, 13