ε-STRONG SIMULATION FOR MULTIDIMENSIONAL STOCHASTIC DIFFERENTIAL EQUATIONS VIA ROUGH PATH ANALYSIS

被引:11
作者
Blanchet, Jose [1 ]
Chen, Xinyun [2 ]
Dong, Jing [3 ]
机构
[1] Columbia Univ, Dept Ind Engn & Operat, 500 West 120th St,RM 313, New York, NY 10027 USA
[2] Wuhan Univ, Econ & Management Sch, Luojia Hill, Wuhan, Peoples R China
[3] Northwestern Univ, McCormick Sch Engn & Appl Sci, Dept Ind Engn & Management Sci, 2145 Sheridan Rd,M239, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Stochastic differential equation; Monte Carlo method; Brownian motion; Levy area; rough path; BROWNIAN-MOTION; DIFFUSIONS; DRIVEN;
D O I
10.1214/16-AAP1204
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a multidimensional diffusion process X = {X (t) : t is an element of [0, 1]}. Let epsilon > 0 be a deterministic, user defined, tolerance error parameter. Under standard regularity conditions on the drift and diffusion coefficients of X, we construct a probability space, supporting both X and an explicit, piecewise constant, fully simulatable process X-epsilon such that (sup)(0 <= t <= 1)parallel to X-epsilon (t) - X parallel to(infinity) < epsilon with probability one. Moreover, the user can adaptively choose epsilon' is an element of (0, epsilon) so that X-epsilon' (also piecewise constant and fully simulatable) can be constructed conditional on X-epsilon to ensure an error smaller than epsilon' with probability one. Our construction requires a detailed study of continuity estimates of the Ito map using Lyons' theory of rough paths. We approximate the underlying Brownian motion, jointly with the Levy areas with a deterministic epsilon error in the underlying rough path metric.
引用
收藏
页码:275 / 336
页数:62
相关论文
共 13 条
[1]   FROM ROUGH PATH ESTIMATES TO MULTILEVEL MONTE CARLO [J].
Bayer, Christian ;
Friz, Peter K. ;
Riedel, Sebastian ;
Schoenmakers, John .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) :1449-1483
[2]   Exact simulation of diffusions [J].
Beskos, A ;
Roberts, GO .
ANNALS OF APPLIED PROBABILITY, 2005, 15 (04) :2422-2444
[3]   Retrospective exact simulation of diffusion sample paths with applications [J].
Beskos, Alexandros ;
Papaspiliopoulos, Omiros ;
Roberts, Gareth O. .
BERNOULLI, 2006, 12 (06) :1077-1098
[4]   ε-Strong simulation of the Brownian path [J].
Beskos, Alexandros ;
Peluchetti, Stefano ;
Roberts, Gareth .
BERNOULLI, 2012, 18 (04) :1223-1248
[5]   STEADY-STATE SIMULATION OF REFLECTED BROWNIAN MOTION AND RELATED STOCHASTIC NETWORKS [J].
Blanchet, Jose ;
Chen, Xinyun .
ANNALS OF APPLIED PROBABILITY, 2015, 25 (06) :3209-3250
[6]   Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations [J].
Chen, Nan ;
Huang, Zhengyu .
MATHEMATICS OF OPERATIONS RESEARCH, 2013, 38 (03) :591-616
[7]  
Davie A. M., 2007, APPL MATH RES EXPRES, V2, P40, DOI [10.1093/amrx/abm009.abm009, DOI 10.1093/AMRX/ABM009]
[8]  
Friz PK., 2010, CAMBRIDGE STUDIES AD
[9]   RANDOM GENERATION OF STOCHASTIC AREA INTEGRALS [J].
GAINES, JG ;
LYONS, TJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (04) :1132-1146
[10]   Differential equations driven by rough signals [J].
Lyons, TJ .
REVISTA MATEMATICA IBEROAMERICANA, 1998, 14 (02) :215-310