ε-STRONG SIMULATION FOR MULTIDIMENSIONAL STOCHASTIC DIFFERENTIAL EQUATIONS VIA ROUGH PATH ANALYSIS

被引:11
作者
Blanchet, Jose [1 ]
Chen, Xinyun [2 ]
Dong, Jing [3 ]
机构
[1] Columbia Univ, Dept Ind Engn & Operat, 500 West 120th St,RM 313, New York, NY 10027 USA
[2] Wuhan Univ, Econ & Management Sch, Luojia Hill, Wuhan, Peoples R China
[3] Northwestern Univ, McCormick Sch Engn & Appl Sci, Dept Ind Engn & Management Sci, 2145 Sheridan Rd,M239, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Stochastic differential equation; Monte Carlo method; Brownian motion; Levy area; rough path; BROWNIAN-MOTION; DIFFUSIONS; DRIVEN;
D O I
10.1214/16-AAP1204
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a multidimensional diffusion process X = {X (t) : t is an element of [0, 1]}. Let epsilon > 0 be a deterministic, user defined, tolerance error parameter. Under standard regularity conditions on the drift and diffusion coefficients of X, we construct a probability space, supporting both X and an explicit, piecewise constant, fully simulatable process X-epsilon such that (sup)(0 <= t <= 1)parallel to X-epsilon (t) - X parallel to(infinity) < epsilon with probability one. Moreover, the user can adaptively choose epsilon' is an element of (0, epsilon) so that X-epsilon' (also piecewise constant and fully simulatable) can be constructed conditional on X-epsilon to ensure an error smaller than epsilon' with probability one. Our construction requires a detailed study of continuity estimates of the Ito map using Lyons' theory of rough paths. We approximate the underlying Brownian motion, jointly with the Levy areas with a deterministic epsilon error in the underlying rough path metric.
引用
收藏
页码:275 / 336
页数:62
相关论文
共 13 条
  • [1] FROM ROUGH PATH ESTIMATES TO MULTILEVEL MONTE CARLO
    Bayer, Christian
    Friz, Peter K.
    Riedel, Sebastian
    Schoenmakers, John
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) : 1449 - 1483
  • [2] Exact simulation of diffusions
    Beskos, A
    Roberts, GO
    [J]. ANNALS OF APPLIED PROBABILITY, 2005, 15 (04) : 2422 - 2444
  • [3] Retrospective exact simulation of diffusion sample paths with applications
    Beskos, Alexandros
    Papaspiliopoulos, Omiros
    Roberts, Gareth O.
    [J]. BERNOULLI, 2006, 12 (06) : 1077 - 1098
  • [4] ε-Strong simulation of the Brownian path
    Beskos, Alexandros
    Peluchetti, Stefano
    Roberts, Gareth
    [J]. BERNOULLI, 2012, 18 (04) : 1223 - 1248
  • [5] STEADY-STATE SIMULATION OF REFLECTED BROWNIAN MOTION AND RELATED STOCHASTIC NETWORKS
    Blanchet, Jose
    Chen, Xinyun
    [J]. ANNALS OF APPLIED PROBABILITY, 2015, 25 (06) : 3209 - 3250
  • [6] Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations
    Chen, Nan
    Huang, Zhengyu
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2013, 38 (03) : 591 - 616
  • [7] Davie A. M., 2007, APPL MATH RES EXPRES, V2, P40, DOI [10.1093/amrx/abm009.abm009, DOI 10.1093/AMRX/ABM009]
  • [8] Friz PK., 2010, CAMBRIDGE STUDIES AD
  • [9] RANDOM GENERATION OF STOCHASTIC AREA INTEGRALS
    GAINES, JG
    LYONS, TJ
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (04) : 1132 - 1146
  • [10] Differential equations driven by rough signals
    Lyons, TJ
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 1998, 14 (02) : 215 - 310