Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-ion porous electrode

被引:255
|
作者
Dees, Dennis W. [1 ]
Kawauchi, Shigehiro [2 ]
Abraham, Daniel P. [1 ]
Prakash, Jai [3 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[2] Toyota Cent Res & Dev Labs Inc, Battery Div, Aichi 4801192, Japan
[3] IIT, Dept Chem & Biol Engn, Chicago, IL 60616 USA
关键词
Lithium-ion; Positive; GITT; Modeling; Battery; POSITIVE ELECTRODES; INSERTION CELL; IMPEDANCE; OPTIMIZATION; PERFORMANCE;
D O I
10.1016/j.jpowsour.2008.09.045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Galvanostatic Intermittent Titration Technique (GITT) experiments were conducted to determine the lithium diffusion coefficient of LiNi0.8Co0.15Al0.05O2, used as the active material in a lithium-ion battery Porous composite positive electrode. An electrochemical model, based on concentrated solution porous electrode theory, was developed to analyze the GITT experimental results and compare to the original GITT analytical theory. The GITT experimental studies on the oxide active material were conducted between 3.5 and 4.5 V vs. lithium, with the maximum lithium diffusion coefficient value being 10(-10) cm(2) s(-1) at 3.85 V. The lithium diffusion coefficient values obtained from this study agree favorably with the values obtained from an earlier electrochemical impedance spectroscopy study. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:263 / 268
页数:6
相关论文
共 50 条
  • [41] Synthesis and application of electrode materials for lithium-ion batteries
    Wu Jiayi
    2019 3RD INTERNATIONAL WORKSHOP ON RENEWABLE ENERGY AND DEVELOPMENT (IWRED 2019), 2019, 267
  • [42] Effect of electrode compression on the wettability of lithium-ion batteries
    Lee, Sang Gun
    Jeon, Dong Hyup
    JOURNAL OF POWER SOURCES, 2014, 265 : 363 - 369
  • [43] Electrode materials for lithium-ion batteries of new generation
    Kulova, T. L.
    Skundin, A. M.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2012, 48 (03) : 330 - 335
  • [44] Anatase Nanotubes as an Electrode Material for Lithium-Ion Batteries
    Zakharova, G. S.
    Jaehne, C.
    Popa, A.
    Taeschner, Ch.
    Gemming, Th.
    Leonhardt, A.
    Buechner, B.
    Klingeler, R.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (15) : 8714 - 8720
  • [45] Simplifying Electrode Design for Lithium-Ion Rechargeable Cells
    Zheng, Tianye
    Boles, Steven T.
    ACS OMEGA, 2022, 7 (42): : 37867 - 37872
  • [46] Impact of lithium-ion coordination in carbonate-based electrolyte on lithium-ion intercalation kinetics into graphite electrode
    Uchida, Satoshi
    Katada, Tomohide
    Ishikawa, Masashi
    ELECTROCHEMISTRY COMMUNICATIONS, 2020, 114 (114)
  • [47] Analysis of the counter-electrode potential in a 3-electrode lithium ion battery cell
    Heubner, C.
    Langklotz, U.
    Schneider, M.
    Michaelis, A.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2015, 759 : 91 - 94
  • [48] A review of metrology in lithium-ion electrode coating processes
    Reynolds, Carl D.
    Slater, Peter R.
    Hare, Sam D.
    Simmons, Mark J. H.
    Kendrick, Emma
    MATERIALS & DESIGN, 2021, 209
  • [49] Inherent Behavior of Electrode Materials of Lithium-Ion Batteries
    Safaeipour, Sepideh
    Shahpouri, Elham
    Kalantarian, Mohammad Mahdi
    Mustarelli, Piercarlo
    CHEMPLUSCHEM, 2024, 89 (09):
  • [50] Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries
    Li, Weihan
    Cao, Decheng
    Joest, Dominik
    Ringbeck, Florian
    Kuipers, Matthias
    Frie, Fabian
    Sauer, Dirk Uwe
    APPLIED ENERGY, 2020, 269