Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-ion porous electrode

被引:255
|
作者
Dees, Dennis W. [1 ]
Kawauchi, Shigehiro [2 ]
Abraham, Daniel P. [1 ]
Prakash, Jai [3 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[2] Toyota Cent Res & Dev Labs Inc, Battery Div, Aichi 4801192, Japan
[3] IIT, Dept Chem & Biol Engn, Chicago, IL 60616 USA
关键词
Lithium-ion; Positive; GITT; Modeling; Battery; POSITIVE ELECTRODES; INSERTION CELL; IMPEDANCE; OPTIMIZATION; PERFORMANCE;
D O I
10.1016/j.jpowsour.2008.09.045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Galvanostatic Intermittent Titration Technique (GITT) experiments were conducted to determine the lithium diffusion coefficient of LiNi0.8Co0.15Al0.05O2, used as the active material in a lithium-ion battery Porous composite positive electrode. An electrochemical model, based on concentrated solution porous electrode theory, was developed to analyze the GITT experimental results and compare to the original GITT analytical theory. The GITT experimental studies on the oxide active material were conducted between 3.5 and 4.5 V vs. lithium, with the maximum lithium diffusion coefficient value being 10(-10) cm(2) s(-1) at 3.85 V. The lithium diffusion coefficient values obtained from this study agree favorably with the values obtained from an earlier electrochemical impedance spectroscopy study. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:263 / 268
页数:6
相关论文
共 50 条
  • [31] Effect of electrode physical and chemical properties on lithium-ion battery performance
    Chabot, Victor
    Farhad, Siamak
    Chen, Zhongwei
    Fung, Alan S.
    Yu, Aiping
    Hamdullahpur, Feridun
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (14) : 1723 - 1736
  • [32] Li insertion into WO3:: introduction of a new electrochemical analysis method and comparison with impedance spectroscopy and the galvanostatic intermittent titration technique
    Mattsson, MS
    SOLID STATE IONICS, 2000, 131 (3-4) : 261 - 273
  • [33] A review on porous negative electrodes for high performance lithium-ion batteries
    Md. Arafat Rahman
    Yat Choy Wong
    Guangsheng Song
    Cuie Wen
    Journal of Porous Materials, 2015, 22 : 1313 - 1343
  • [34] A review on porous negative electrodes for high performance lithium-ion batteries
    Rahman, Md. Arafat
    Wong, Yat Choy
    Song, Guangsheng
    Wen, Cuie
    JOURNAL OF POROUS MATERIALS, 2015, 22 (05) : 1313 - 1343
  • [35] Li Diffusion in Thin-Film LiySi Electrodes: Galvanostatic Intermittent Titration Technique and Tracer Diffusion Experiments
    Uxa, Daniel
    Hueger, Erwin
    Schmidt, Harald
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (51) : 27894 - 27899
  • [36] Design of silicon-based porous electrode in lithium-ion batteries: Insights from multiscale electrode model simulations
    Qi, Junyi
    Fang, Ruqing
    Li, Zhe
    JOURNAL OF ENERGY STORAGE, 2024, 104
  • [37] Noninvasive Aging Analysis of Lithium-Ion Batteries in Extreme Cold Temperatures
    Soto, Adrian
    Berrueta, Alberto
    Oficialdegui, Ignacio
    Sanchis, Pablo
    Ursua, Alfredo
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2022, 58 (02) : 2400 - 2410
  • [38] Electrocapillary boosting electrode wetting for lithium-ion batteries
    Cui, Hao
    Song, Youzhi
    Ren, Dongsheng
    Wang, Li
    He, Xiangming
    JOULE, 2024, 8 (01) : 29 - 44
  • [39] Organic Sulfide Electrode Materials for Lithium-Ion Batteries
    Sun Wanning
    Ying Jierong
    Huang Zhenlei
    Jiang Changyin
    Wan Chunrong
    PROGRESS IN CHEMISTRY, 2009, 21 (09) : 1963 - 1968
  • [40] Manganese dissolution in lithium-ion positive electrode materials
    Saulnier, M.
    Auclair, A.
    Liang, G.
    Schougaard, S. B.
    SOLID STATE IONICS, 2016, 294 : 1 - 5