On the Almost Everywhere Convergence of Sequences of Multiple Rectangular Fourier Sums

被引:0
|
作者
Antonov, N. Yu. [1 ]
机构
[1] Russian Acad Sci, Ural Div, Inst Math & Mech, Ekaterinburg 620219, Russia
基金
俄罗斯基础研究基金会;
关键词
multiple trigonometric Fourier series; almost everywhere convergence; SERIES;
D O I
10.1134/S0081543809050010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the case when a sequence of d-dimensional vectors n(k) = ( n(k)(1), n(k)(2),..., n(k)(d)) with nonnegative integer coordinates satisfies the condition n(k)(j) = alpha(j)m(k) + O(1), k is an element of N, 1 <= j <= d, where alpha(1),..., alpha(d) > 0, m(k) is an element of N, and lim(k ->infinity) m(k) = infinity, under some conditions on the function phi: [0, +infinity) -> [0, +infinity), it is proved that, if the trigonometric Fourier series of any function from phi(L)([-pi, pi) converges almost everywhere, then, for any d is an element of N and all f is an element of phi(L)(ln(+) L)(d-1)([-pi, pi)(d)), the sequence S(nk) (f, x) of the rectangular partial sums of the multiple trigonometric Fourier series of the function f, as well as the corresponding sequences of partial sums of all of its conjugate series, converges almost everywhere.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [31] ALMOST EVERYWHERE CONVERGENCE OF THE SPHERICAL PARTIAL FOURIER INTEGRALS FOR RADIAL FUNCTIONS
    Carro, Maria J.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2010, 4 (01): : 92 - 99
  • [32] Equiconvergence of expansions in multiple trigonometric Fourier series and Fourier integral with "J(k)-lacunary sequences of rectangular partial sums"
    Bloshanskii, Igor L.
    Grafov, Denis A.
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2014, 18 (01): : 69 - 80
  • [33] Almost Everywhere Convergent Fourier Series
    M. J. Carro
    M. Mastyło
    L. Rodríguez-Piazza
    Journal of Fourier Analysis and Applications, 2012, 18 : 266 - 286
  • [34] Almost Everywhere Convergent Fourier Series
    Carro, M. J.
    Mastylo, M.
    Rodriguez-Piazza, L.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (02) : 266 - 286
  • [35] Norm and almost everywhere convergence of matrix transform means of Walsh-Fourier series
    Blahota, Istvan
    Gat, Gyoergy
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2023, 15 (02) : 244 - 258
  • [36] ALMOST EVERYWHERE CONVERGENCE OF LAGUERRE SERIES
    CHEN, CP
    LIN, CC
    STUDIA MATHEMATICA, 1994, 109 (03) : 291 - 301
  • [37] BMO-Estimation and Almost Everywhere Exponential Summability of Quadratic Partial Sums of Double Fourier Series
    U. Goginava
    L. Gogoladze
    G. Karagulyan
    Constructive Approximation, 2014, 40 : 105 - 120
  • [38] Almost Everywhere Divergent Subsequences of Fourier Sums of Functions from φ(L) ∧ H1w
    Antonov, N. Yu.
    MATHEMATICAL NOTES, 2009, 85 (3-4) : 484 - 495
  • [39] BMO-Estimation and Almost Everywhere Exponential Summability of Quadratic Partial Sums of Double Fourier Series
    Goginava, U.
    Gogoladze, L.
    Karagulyan, G.
    CONSTRUCTIVE APPROXIMATION, 2014, 40 (01) : 105 - 120
  • [40] Sufficient conditions for convergence of multiple Fourier series with Jκ-lacunary sequence of rectangular partial sums in terms of Weyl multipliers
    Bloshanskii I.L.
    Bloshanskaya S.K.
    Grafov D.A.
    Acta Scientiarum Mathematicarum, 2017, 83 (3-4): : 511 - 537