BMAP/G/1/az system with last come first served probabilistic priority

被引:4
作者
Milovanova, T. A. [1 ]
机构
[1] Patrice Lumumba Peoples Friendship Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
REMAINING PROCESSING TIME; DISCIPLINE; QUEUE; M/G/1;
D O I
10.1134/S0005117909050142
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Consideration was given to the BMAP/G/1/az single-server queuing system with batch Markov arrivals, arbitrary servicing, finite-capacity buffer, and last come first served probabilistic priority. Equations for determination of the stationary probabilities of states and stationary characteristics associated with the time of customer sojourn in the system were determined.
引用
收藏
页码:885 / 896
页数:12
相关论文
共 22 条
[1]  
Bocharov P.P., 2004, QUEUEING THEORY
[2]  
BOCHAROV PP, 1995, TEORIYA MASSOVOGO OB
[3]   ON A RELATIONSHIP BETWEEN PROCESSOR-SHARING QUEUES AND CRUMP-MODE-JAGERS BRANCHING-PROCESSES [J].
GRISHECHKIN, S .
ADVANCES IN APPLIED PROBABILITY, 1992, 24 (03) :653-698
[4]  
MILOVANOVA TA, 2007, INFORM PROTSESSY, P153
[5]  
MILOVANOVA TA, 2007, INFORM PROTSESSY, P411
[6]  
NAGONENKO VA, 1984, IZV AKAD NAUK SSSR T, P86
[7]  
NAGONENKO VA, 1981, IZV AKAD NAUK SSSR T, P91
[8]  
NAGONENKO VA, 1982, IZV AKAD NAUK SSSR T, P86
[9]  
NAGONENKO VA, 1981, IZV AKAD NAUK SSSR T, P187
[10]  
Pechinkin A. B., 1983, Mathematische Operationsforschung und Statistik, Series Optimization, V14, P433, DOI 10.1080/02331938308842876