Some inertia theorems in Euclidean Jordan algebras

被引:29
|
作者
Gowda, M. Seetharama [1 ]
Tao, Jiyuan [2 ]
Moldovan, Melania [1 ]
机构
[1] Univ Maryland, Dept Math & Stat, Baltimore, MD 21250 USA
[2] Loyola Coll, Dept Math Sci, Baltimore, MD 21210 USA
关键词
Euclidean Jordan algebra; Inertia; Sylvester's law of inertia; Lyapunov transformation; Quadratic representation; Cone spectrum; Ostrowski-Schneider inertia theorem; LINEAR TRANSFORMATIONS; SYLVESTERS LAW; P-PROPERTIES; CONES;
D O I
10.1016/j.laa.2008.11.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with some inertia theorems in Euclidean Jordan algebras. First, based on the continuity of eigenvalues, we give an alternate proof of Kaneyuki's generalization of Sylvester's law of inertia in simple Euclidean Jordan algebras. As a consequence, we show that the cone spectrum of any quadratic representation with respect to a symmetric cone is finite. Second, we present Ostrowski-Schneider type inertia results in Euclidean Jordan algebras. In particular, we relate the inertias of objects a and x in a Euclidean Jordan algebra when L-a(x) > 0 or S-a(x) > 0, where L-a and S-a denote Lyapunov and Stein transformations, respectively. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1992 / 2011
页数:20
相关论文
共 50 条
  • [21] Some inequalities involving determinants, eigenvalues, and Schur complements in Euclidean Jordan algebras
    Gowda, M. Seetharama
    Tao, Jiyuan
    POSITIVITY, 2011, 15 (03) : 381 - 399
  • [22] SOME USEFUL INEQUALITIES VIA TRACE FUNCTION METHOD IN EUCLIDEAN JORDAN ALGEBRAS
    Chang, Yu-Lin
    Yang, Chin-Yu
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2014, 4 (01): : 39 - 48
  • [23] Some new results on Euclidean Jordan algebras and its associated symmetric cones
    Wang Guoqiang
    Bai Yanqin
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 329 - 333
  • [24] Some inequalities involving determinants, eigenvalues, and Schur complements in Euclidean Jordan algebras
    M. Seetharama Gowda
    Jiyuan Tao
    Positivity, 2011, 15 : 381 - 399
  • [25] A note on an inequality involving Jordan product in Euclidean Jordan algebras
    Guoqiang Wang
    Jiyuan Tao
    Lingchen Kong
    Optimization Letters, 2016, 10 : 731 - 736
  • [26] A note on an inequality involving Jordan product in Euclidean Jordan algebras
    Wang, Guoqiang
    Tao, Jiyuan
    Kong, Lingchen
    OPTIMIZATION LETTERS, 2016, 10 (04) : 731 - 736
  • [27] Euclidean Jordan Algebras with Strongly Regular Graphs
    D. M. Cardoso
    L. Vieira
    Journal of Mathematical Sciences, 2004, 120 (1) : 881 - 894
  • [28] Pure Maps between Euclidean Jordan Algebras
    Westerbaan, Abraham
    Westerbaan, Bas
    van de Wetering, John
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2019, (287): : 345 - 364
  • [29] Pseudomonotonicity of Nonlinear Transformations on Euclidean Jordan Algebras
    Yuan-Min Li
    Acta Mathematicae Applicatae Sinica, English Series, 2024, 40 : 192 - 204
  • [30] Euclidean Jordan Algebras and Strongly Regular Graphs
    Vieira, Luis
    DYNAMICS, GAMES AND SCIENCE II, 2011, 2 : 689 - 701