Substrate-induced cross-plane thermal propagative modes in few-layer graphene

被引:16
作者
Ni, Yuxiang [1 ]
Kosevich, Yuriy A. [1 ,2 ]
Xiong, Shiyun [1 ]
Chalopin, Yann [1 ]
Volz, Sebastian [1 ]
机构
[1] Ecole Cent Paris, CNRS UPR 288, Lab Energet Mol & Macroscop, F-92295 Chatenay Malabry, France
[2] Russian Acad Sci, Semenov Inst Chem Phys, Moscow 119991, Russia
关键词
DYNAMICS; CONDUCTIVITY; SIMULATION; INTERFACE; TRANSPORT;
D O I
10.1103/PhysRevB.89.205413
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report the layer-number dependence of the averaged interlayer thermal resistances (R-int) of the suspended and supported few-layer graphene (FLG), simulated by equilibrium molecular dynamics (EMD). The existence of a silicon dioxide substrate significantly decreases the R-int of FLG at low layer number. We use the model of long-wavelength dynamics of a nanolayer adsorbed on a deformable crystal [Kosevich and Syrkin, Phys. Lett. A 135, 298 (1989)] to explain the appearance of the substrate-induced gaps in the FLG dispersion curves and phonon radiation into the deformable substrate from these gap modes. The enhanced thermal conductance in the cross-plane direction is ascribed to the phonon radiation from FLG into the deformable substrate, which partially transfers the flow of phonon energy in FLG from the in-plane to the cross-plane direction and to the substrate. To confirm this, we calculate the cross-plane thermal resistance of three-layer graphene supported by an effective SiO2 substrate in which atomic masses are increased by a factor of 1000. This makes the substrate almost immovable and suppresses phonon radiation from the supported FLG by complete phonon reflection at the interface. The cross-plane thermal resistance of three-layer graphene supported on such a substrate is found to be the same as its suspended counterpart.
引用
收藏
页数:5
相关论文
共 45 条
[1]  
[Anonymous], 2003, The Frenkel-Kontorova Model: Concepts, Methods, and Applications
[2]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[3]   Kapitza resistance at the liquid-solid interface [J].
Barrat, JL ;
Chiaruttini, F .
MOLECULAR PHYSICS, 2003, 101 (11) :1605-1610
[4]   Evidence for complete surface wave band gap in a piezoelectric phononic crystal [J].
Benchabane, S. ;
Khelif, A. ;
Rauch, J. -Y. ;
Robert, L. ;
Laude, V. .
PHYSICAL REVIEW E, 2006, 73 (06)
[5]   Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics [J].
Chalopin, Y. ;
Esfarjani, K. ;
Henry, A. ;
Volz, S. ;
Chen, G. .
PHYSICAL REVIEW B, 2012, 85 (19)
[6]   Thermal contact resistance between graphene and silicon dioxide [J].
Chen, Z. ;
Jang, W. ;
Bao, W. ;
Lau, C. N. ;
Dames, C. .
APPLIED PHYSICS LETTERS, 2009, 95 (16)
[7]   COMPUTER SIMULATION OF LATTICE DYNAMICS OF SOLIDS [J].
DICKEY, JM ;
PASKIN, A .
PHYSICAL REVIEW, 1969, 188 (03) :1407-+
[8]   Mobility and saturation velocity in graphene on SiO2 [J].
Dorgan, Vincent E. ;
Bae, Myung-Ho ;
Pop, Eric .
APPLIED PHYSICS LETTERS, 2010, 97 (08)
[9]   Energy Dissipation in Graphene Field-Effect Transistors [J].
Freitag, Marcus ;
Steiner, Mathias ;
Martin, Yves ;
Perebeinos, Vasili ;
Chen, Zhihong ;
Tsang, James C. ;
Avouris, Phaedon .
NANO LETTERS, 2009, 9 (05) :1883-1888
[10]   Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J].
Ghosh, S. ;
Calizo, I. ;
Teweldebrhan, D. ;
Pokatilov, E. P. ;
Nika, D. L. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)