Predictive Quantization for Staggered Synthetic Aperture Radar

被引:0
|
作者
Gollin, Nicola [1 ]
Martone, Michele [1 ]
Villano, Michelangelo [1 ]
Rizzoli, Paola [1 ]
Krieger, Gerhard [1 ]
机构
[1] DLR, Microwaves & Radar Inst, Cologne, Germany
来源
2019 12TH GERMAN MICROWAVE CONFERENCE (GEMIC) | 2019年
关键词
Synthetic Aperture Radar; Quantization; Predictive Coding; Staggered SAR; Tandem-L;
D O I
10.23919/gemic.2019.8698197
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For upcoming spaceborne SAR mission the amount of data collected onboard is increasing, due to the employment of large bandwidths, multiple polarizations, and large swath widths, which lead to hard requirements in terms of onboard memory and downlink capacity. In this context, SAR raw data quantization represents an essential aspect, since it affects both the amount of data to be stored and transmitted to the ground and the quality of the resulting SAR products. In this paper, a data reduction approach based on predictive quantization is investigated in the context of Tandem-L, a DLR proposal for a highly innovative bistatic L-band radar satellite mission, aimed at monitoring the dynamic processes of the Earth. The proposed technique takes advantage of the time-variant autocorrelation properties of the non-uniform azimuth raw data stream in order to reduce the amount of data through a novel quantization method, named Predictive-Block Adaptive Quantization. Different prediction orders are investigated by considering the trade-off between achievable performance and complexity. Simulations for different target scenarios show that a data reduction of about 17.5% can be achieved with the proposed technique with a modest increase of the system complexity. Moreover, having a priori information on the gap positions in staggered SAR, a technique for their reconstruction based on dynamic bit allocation has been successfully implemented as well, showing no significant loss of information.
引用
收藏
页码:83 / 86
页数:4
相关论文
共 50 条
  • [1] Processing Techniques for Nadir Echo Suppression in Staggered Synthetic Aperture Radar
    Peixoto, Maxwell Nogueira
    Villano, Michelangelo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [2] Choosing the Quantization Bits and Quantization Method of Synthetic Aperture Radar Image
    Wu Honghan
    Feng Jin
    SEVENTH SYMPOSIUM ON NOVEL PHOTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATIONS, 2021, 11763
  • [3] Staggered Coprime Pulse Repetition Frequencies Synthetic Aperture Radar (SCopSAR)
    Aldharrab, Abdulmalik
    Davies, Mike E.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Precursors for synthetic aperture radar
    Cartwright, Natalie A.
    Muller, Kaitlyn
    INVERSE PROBLEMS, 2023, 39 (06)
  • [5] Principles Of Synthetic Aperture Radar
    R. Bamler
    Surveys in Geophysics, 2000, 21 : 147 - 157
  • [6] Quantum Synthetic Aperture Radar
    Lanzagorta, Marco
    Jitrik, Oliverio
    Uhlmann, Jeffrey
    Venegas-Andraca, Salvador E.
    RADAR SENSOR TECHNOLOGY XXI, 2017, 10188
  • [7] A Panoramic Synthetic Aperture Radar
    Nan, Yijiang
    Huang, Xiaojing
    Guo, Y. Jay
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Synthetic Aperture Radar for Geosciences
    Meng, Lingsheng
    Yan, Chi
    Lv, Suna
    Sun, Haiyang
    Xue, Sihan
    Li, Quankun
    Zhou, Lingfeng
    Edwing, Deanna
    Edwing, Kelsea
    Geng, Xupu
    Wang, Yiren
    Yan, Xiao-Hai
    REVIEWS OF GEOPHYSICS, 2024, 62 (03)
  • [9] AZIMUTHAL AMBIGUITIES IN SYNTHETIC APERTURE SONAR AND SYNTHETIC APERTURE RADAR IMAGERY
    ROLT, KD
    SCHMIDT, H
    IEEE JOURNAL OF OCEANIC ENGINEERING, 1992, 17 (01) : 73 - 79
  • [10] Monitoring Dynamic Processes on the Earth's Surface Using Synthetic Aperture Radar
    Villano, Michelangelo
    Krieger, Gerhard
    Papathanassiou, Konstantinos P.
    Moreira, Alberto
    2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENTAL ENGINEERING (EE), 2018,