Construction of genetically engineered Candida tropicalis for conversion of L-arabinose to L-ribulose

被引:5
作者
Yeo, In-Seok [1 ]
Shim, Woo-Yong [1 ]
Kim, Jung Hoe [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Biol Sci, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Candida tropicalis; L-arabinose; L-arabinose isomerase; L-arabinose transporter; L-ribulose; SACCHAROMYCES-CEREVISIAE; BACILLUS-LICHENIFORMIS; XYLITOL PRODUCTION; ESCHERICHIA-COLI; D-XYLOSE; RARE SUGARS; L-RIBOSE; ISOMERASE; GENE; EXPRESSION;
D O I
10.1016/j.jbiotec.2018.01.019
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
For the biological production of L-ribulose, conversion by enzymes or resting cells has been investigated. However, expensive or concentrated substrates, an additional purification step to remove borate and the requirement for cell cultivation and harvest steps before utilization of resting cells make the production process complex and unfavorable. Microbial fermentation may help overcome these limitations. In this study, we constructed a genetically engineered Candida tropicalis strain to produce L-ribulose by fermentation with a glucose/L-arabinose mixture. For the uptake of L-arabinose as a substrate and conversion of L-arabinose to L-ribulose, two heterologous genes coding for L-arabinose transporter and L-arabinose isomerase, were constitutively expressed in C. tropicalis under the GAPDH promoter. The Arabidopsis thaliana-originated L-arabinose transporter gene (STP2)-expressing strain exhibited a high L-arabinose uptake rate of 0.103 g/g cell/h and the expression of L-arabinose isomerase from Lactobacillus sakei 23 K showed 30% of conversion (9 g/L) from 30 g/L of L-arabinose. This genetically engineered strain can be used for L-ribulose production by fermentation using mixed sugars of glucose and L-arabinose.
引用
收藏
页码:9 / 14
页数:6
相关论文
共 36 条
[1]   Biochemical preparation of L-ribose and L-arabinose from ribitol: A new approach [J].
Ahmed, Z ;
Shimonishi, T ;
Bhuiyan, SH ;
Utamura, M ;
Takada, G ;
Izumori, K .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 1999, 88 (04) :444-448
[2]   A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol [J].
Becker, J ;
Boles, E .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (07) :4144-4150
[3]   Enzymes for the biocatalytic production of rare sugars [J].
Beerens, Koen ;
Desmet, Tom ;
Soetaert, Wim .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2012, 39 (06) :823-834
[4]   Dehydrogenation of ribitol with Gluconobacter oxydans:: Production and stability of L-ribulose [J].
De Muynck, Cassandra ;
Pereira, Catarina ;
Soetaert, Wim ;
Vandamme, Erick .
JOURNAL OF BIOTECHNOLOGY, 2006, 125 (03) :408-415
[5]  
DISCHE Z, 1951, J BIOL CHEM, V192, P583
[6]   DEVELOPMENT OF AN INTEGRATIVE DNA TRANSFORMATION SYSTEM FOR THE YEAST CANDIDA-TROPICALIS [J].
HAAS, LOC ;
CREGG, JM ;
GLEESON, MAG .
JOURNAL OF BACTERIOLOGY, 1990, 172 (08) :4571-4577
[7]   Metabolic engineering of lactobacillus plantarum for production of l-ribulose [J].
Helanto, M. ;
Kiviharju, K. ;
Leisola, M. ;
Nyyssoelae, A. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (21) :7083-7091
[8]   PRODUCTION OF XYLITOL FROM D-XYLOSE BY CANDIDA-TROPICALIS - OPTIMIZATION OF PRODUCTION-RATE [J].
HORITSU, H ;
YAHASHI, Y ;
TAKAMIZAWA, K ;
KAWAI, K ;
SUZUKI, T ;
WATANABE, N .
BIOTECHNOLOGY AND BIOENGINEERING, 1992, 40 (09) :1085-1091
[9]   Effect of heterologous xylose transporter expression in Candida tropicalis on xylitol production rate [J].
Jeon, Woo Young ;
Shim, Woo Yong ;
Lee, Sung Hyeon ;
Choi, Joon Ho ;
Kim, Jung Hoe .
BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2013, 36 (06) :809-817
[10]   Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis [J].
Jeon, Woo Young ;
Yoon, Byoung Hoon ;
Ko, Byoung Sam ;
Shim, Woo Yong ;
Kim, Jung Hoe .
BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2012, 35 (1-2) :191-198