Fuzz nanostructure and erosion on tungsten-vanadium alloys exposed to helium plasma in the STEP linear plasma device

被引:16
作者
Wang, Jun [1 ]
Cheng, Long [1 ]
Yuan, Yue [1 ]
Lu, Guang-Hong [1 ]
Ge, Lin [2 ]
Zhou, Zhang-Jian [3 ]
机构
[1] Beihang Univ, Sch Phys, Beijing 100091, Peoples R China
[2] Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing Key Lab Microstruct & Property Adv Mat, Beijing 100124, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
关键词
tungsten-vanadium alloy; helium; fuzz nanostructure; linear plasma device STEP; 1ST PRINCIPLES; RETENTION; BEHAVIORS; SURFACES; GROWTH;
D O I
10.1088/1741-4326/ab1e81
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Tungsten-vanadium (W-V) alloys with 5 and 10 wt.% V made using hot-pressing sintering have been subjected to helium plasma at 1050 K with ion energy of 100 eV for one hour in a linear plasma generator STEP. The W-V alloys consist of three typical phase regions, i.e. the W-enriched region, the W-V solid solute region and the V-enriched region. Slight surface erosion on the W-V solid solute region and severe surface erosion on the V-enriched region are observed on the exposed surface. Sputtering during the He plasma loading contributed to the surface erosion in the W-V solid solute region and the V-enriched region. Slight sputtering on W-V solid solute region is expected given that the lighter alloying element increases the sputtering yield of the W-based material. Moreover, fuzz nanostructure formed on the surface of the W-V alloys under the applied irradiation conditions. The W-V solid solute region exhibits severe fuzz growth in comparison with the W-enriched region when exposed to He plasma, especially in the low flux area. The intense attraction interaction between He and substitutional V atoms aggravates the fuzz growth on the W-V solid solute region. Furthermore, the aggravation effect of V on fuzz nanostructure evolution is mitigated in the high flux area due to the enhanced preferential V sputtering.
引用
收藏
页数:8
相关论文
共 58 条
[21]   TEM observation of the growth process of helium nanobubbles on tungsten: Nanostructure formation mechanism [J].
Kajita, Shin ;
Yoshida, Naoaki ;
Yoshihara, Reiko ;
Ohno, Noriyasu ;
Yamagiwa, Masato .
JOURNAL OF NUCLEAR MATERIALS, 2011, 418 (1-3) :152-158
[22]   Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions [J].
Kajita, Shin ;
Sakaguchi, Wataru ;
Ohno, Noriyasu ;
Yoshida, Naoaki ;
Saeki, Tsubasa .
NUCLEAR FUSION, 2009, 49 (09)
[23]   Molecular dynamics simulations of ballistic He penetration into W fuzz [J].
Klaver, T. P. C. ;
Nordlund, K. ;
Morgan, T. W. ;
Westerhof, E. ;
Thijsse, B. J. ;
van de Sanden, M. C. M. .
NUCLEAR FUSION, 2016, 56 (12)
[24]   He cluster dynamics in fusion related plasma facing materials [J].
Krasheninnikov, S. I. ;
Smirnov, R. D. .
NUCLEAR FUSION, 2015, 55 (07)
[25]   On helium cluster dynamics in tungsten plasma facing components of fusion devices [J].
Krasheninnikov, S. I. ;
Faney, T. ;
Wirth, B. D. .
NUCLEAR FUSION, 2014, 54 (07)
[26]   Viscoelastic model of tungsten 'fuzz' growth [J].
Krasheninnikov, S. I. .
PHYSICA SCRIPTA, 2011, T145
[27]   Helium retention and early stages of helium-vacancy complexes formation in low energy helium-implanted tungsten [J].
Lhuillier, P. E. ;
Belhabib, T. ;
Desgardin, P. ;
Courtois, B. ;
Sauvage, T. ;
Barthe, M. F. ;
Thomann, A. L. ;
Brault, P. ;
Tessier, Y. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 433 (1-3) :305-313
[28]   Development of advanced high heat flux and plasma-facing materials [J].
Linsmeier, Ch. ;
Rieth, M. ;
Aktaa, J. ;
Chikada, T. ;
Hoffmann, A. ;
Hoffmann, J. ;
Houben, A. ;
Kurishita, H. ;
Jin, X. ;
Li, M. ;
Litnovsky, A. ;
Matsuo, S. ;
von Mueller, A. ;
Nikolic, V. ;
Palacios, T. ;
Pippan, R. ;
Qu, D. ;
Reiser, J. ;
Riesch, J. ;
Shikama, T. ;
Stieglitz, R. ;
Weber, T. ;
Wurster, S. ;
You, J. -H. ;
Zhou, Z. .
NUCLEAR FUSION, 2017, 57 (09)
[29]   Smart tungsten alloys as a material for the first wall of a future fusion power plant [J].
Litnovsky, A. ;
Wegener, T. ;
Klein, F. ;
Linsmeier, Ch. ;
Rasinski, M. ;
Kreter, A. ;
Unterberg, B. ;
Coenen, J. W. ;
Du, H. ;
Mayer, J. ;
Garcia-Rosales, C. ;
Calvo, A. ;
Ordas, N. .
NUCLEAR FUSION, 2017, 57 (06)
[30]  
Liu XN, 2005, PLASMA SCI TECHNOL, V7, P2835, DOI 10.1088/1009-0630/7/3/011