Boundary fractional differential equation in a complex domain

被引:18
作者
Ibrahim, Rabha W. [1 ]
Jahangiri, Jay M. [2 ]
机构
[1] Univ Malaya, Inst Math Sci, Kuala Lumpur 50603, Malaysia
[2] Kent State Univ, Inst Math Sci, Burton, OH 44021 USA
关键词
DZIOK-SRIVASTAVA OPERATOR; ANALYTIC-FUNCTIONS;
D O I
10.1186/1687-2770-2014-66
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss univalent solutions of boundary fractional differential equations in a complex domain. The fractional operators are taken in the sense of the Srivastava-Owa calculus in the unit disk. The existence of subsolutions and supersolutions (maximal and minimal) is established. The existence of a unique univalent solution is imposed. Applications are constructed by making use of a transformation formula for fractional derivatives as well as generalized fractional derivatives.
引用
收藏
页数:11
相关论文
共 26 条
[1]  
[Anonymous], 1989, UNIVALENT FUNCTIONS
[2]  
Bauer F, ARXIV09063139V2MATHC
[3]  
Cerne M, 2011, P AM MATH SOC, V139, P473
[4]   A PROOF OF THE BIEBERBACH CONJECTURE [J].
DEBRANGES, L .
ACTA MATHEMATICA, 1985, 154 (1-2) :137-152
[5]  
Duren P.L., 1983, UNIVALENT FUNCTIONS, V259
[6]   Classes of analytic functions associated with the generalized hypergeometric function [J].
Dziok, J ;
Srivastava, HM .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 103 (01) :1-13
[7]   A note on some new series of special functions [J].
Gaboury, S. ;
Tremblay, R. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (05) :336-343
[8]  
Gamelin T. W., 2001, COMPLEX ANAL
[9]  
HOHLOV Y, 1989, PLISKA STUDIA MATH B, V10, P87
[10]  
Hohlov Yu.E., 1985, Ukrain. Mat. Zh., V37, P220