In this paper, two formulations in explicit form to derive the fundamental solutions for two and three dimensional unsteady unbounded Stokes flows due to a mass source and a point force are presented, based on the vector calculus method and also the Hormander's method. The mathematical derivation process for the fundamental solutions is detailed. The steady fundamental solutions of Stokes equations can be obtained from the unsteady fundamental solutions by the integral process. As an application, we adopt fundamental solutions: an unsteady Stokeslet and an unsteady potential dipole to validate a simple case that a sphere translates in Stokes or low-Reynolds-number flow by using the singularity method instead by the traditional method which in general limits to the assumption of oscillating flow. It is concluded that this study is able to extend the unsteady Stokes flow theory to more general transient motions by making use of the fundamental solutions of the linearly unsteady Stokes equations.
机构:
Univ Lisbon, Inst Super Tecn, Dept Matemat, CEMAT, Av Rovisco Pais 1, P-1049001 Lisbon, PortugalUniv Lisbon, Inst Super Tecn, Dept Matemat, CEMAT, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
Alves, Carlos J. S.
Serrao, Rodrigo G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Inst Super Tecn, Dept Matemat, CEMAT, Av Rovisco Pais 1, P-1049001 Lisbon, PortugalUniv Lisbon, Inst Super Tecn, Dept Matemat, CEMAT, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
Serrao, Rodrigo G.
Silvestre, Ana L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Inst Super Tecn, Dept Matemat, CEMAT, Av Rovisco Pais 1, P-1049001 Lisbon, PortugalUniv Lisbon, Inst Super Tecn, Dept Matemat, CEMAT, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
机构:
Univ Pau & Pays Adour, CNRS, Lab Math Appl, UMR 5142,IPRA, F-64000 Pau, FranceUniv Pau & Pays Adour, CNRS, Lab Math Appl, UMR 5142,IPRA, F-64000 Pau, France
Amrouche, Cherif
Angeles Rodriguez-Bellido, Maria
论文数: 0引用数: 0
h-index: 0
机构:
Univ Seville, Dpto Ecuac Diferenciales & Anal Numer, E-41080 Seville, SpainUniv Pau & Pays Adour, CNRS, Lab Math Appl, UMR 5142,IPRA, F-64000 Pau, France
机构:
N China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450011, Peoples R China
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R ChinaN China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450011, Peoples R China
Lian, Ru-xu
Li, Ming-jie
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R ChinaN China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450011, Peoples R China