On the rank of the elliptic curve y2 = x3 + kx.: II

被引:1
作者
Kihara, S [1 ]
机构
[1] Univ Tokushima, Sch Med, Dept Neuropsychiat, Tokushima 7708503, Japan
关键词
elliptic curve; rank;
D O I
10.3792/pjaa.80.24
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an elliptic curve of the form y(2) = x(3) + kx with rank at least 6 over Q(x(1), x(2), x(3)).
引用
收藏
页码:24 / 25
页数:2
相关论文
共 50 条
[41]   The integral points on elliptic curves y2 = x3+(36n2- 9)x-2(36n2-5) [J].
Yang, Hai ;
Fu, Ruiqin .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (02) :375-383
[42]   Explicit estimates on a theorem of Shioda concerning the ranksof curves given by y2=x3-a2x+m2 [J].
Walsh, P. Gary .
PUBLICATIONES MATHEMATICAE DEBRECEN, 2025, 107 (1-2) :167-172
[43]   Ranks in the family of hyperelliptic Jacobians of y2 = x5 + ax II [J].
Jedrzejak, Tomasz .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (04) :813-837
[44]   Rank of an elliptic curve and 3-rank of a quadratic field via the Burgess bounds [J].
Elkies, Noam D. .
RESEARCH IN NUMBER THEORY, 2025, 11 (03)
[45]   On the Equation Y2 = X5 + k [J].
Bremner, Andrew .
EXPERIMENTAL MATHEMATICS, 2008, 17 (03) :371-374
[46]   On an elliptic curve over Q(t) of rank ≥ 9 with a non-trivial 2-torsion point [J].
Kihara, S .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2001, 77 (01) :11-12
[47]   On the family of elliptic curves y2=x3-m2x+p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y^2=x^3-m^2x+p^2}$$\end{document} [J].
Abhishek Juyal ;
Shiv Datt Kumar .
Proceedings - Mathematical Sciences, 2018, 128 (5)
[48]   Ranks in the family of hyperelliptic Jacobians of y2 = x5 + ax [J].
Jedrzejak, Tomasz .
JOURNAL OF NUMBER THEORY, 2021, 223 :35-52
[49]   ON QUADRATIC TWISTS OF ELLIPTIC CURVES y(2) = x(x - 1)(x - lambda) [J].
Dujella, Andrej ;
Gusic, Ivica ;
Lasic, Luka .
RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2014, 18 (519) :27-34
[50]   CM POINTS, CLASS NUMBERS, AND THE MAHLER MEASURES OF x3 + y3+1- kxy [J].
Tao, Zhengyu ;
Guo, Xuejun .
MATHEMATICS OF COMPUTATION, 2025, 94 (351) :425-446